Author:
Aykol Canay,Guliyev Vagif S,Serbetci Ayhan
Abstract
Abstract
In this paper we define a new class of functions called local Morrey-Lorentz spaces
M
p
,
q
;
λ
loc
(
R
n
)
,
0
<
p
,
q
≤
∞
and
0
≤
λ
≤
1
. These spaces generalize Lorentz spaces such that
M
p
,
q
;
0
loc
(
R
n
)
=
L
p
,
q
(
R
n
)
. We show that in the case
λ
<
0
or
λ
>
1
, the space
M
p
,
q
;
λ
loc
(
R
n
)
is trivial, and in the limiting case
λ
=
1
, the space
M
p
,
q
;
1
loc
(
R
n
)
is the classical Lorentz space
Λ
∞
,
t
1
p
−
1
q
(
R
n
)
. We show that for
0
<
q
≤
p
<
∞
and
0
<
λ
≤
q
p
, the local Morrey-Lorentz spaces
M
p
,
q
;
λ
loc
(
R
n
)
are equal to weak Lebesgue spaces
W
L
1
p
−
λ
q
(
R
n
)
. We get an embedding between local Morrey-Lorentz spaces and Lorentz-Morrey spaces. Furthermore, we obtain the boundedness of the maximal operator in the local Morrey-Lorentz spaces.
MSC:42B20, 42B25, 42B35, 47G10.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献