Affiliation:
1. Department of Mathematics, Faculty of Science, Ankara University, Ankara, Turkey
2. Department of Mathematics, Faculty of Science, Bilecik S,eyh Edebali University, Bilecik, Turkey
Abstract
In this paper, we prove the boundedness of B?maximal operator, B?singular
integral operator and B?Riesz potential in the variable exponent Lorentz
space Lp(?),q(?),?(Rn k,+). As a consequence of the boundedness of B?Riesz
potentials in variable exponent Lorentz spaces, we also obtain that
B?fractional maximal operators are bounded in Lp(?),q(?),?(Rn k,+).
Publisher
National Library of Serbia
Reference20 articles.
1. I. A. Aliev, A. D. Gadjiev,Weighted estimates of multidimensional singular integrals generated by the generalized shift operator, Mat. Sb. 183 (1992) 45-66, English, translated into Russian, Acad. Sci. Sb. Math. 77 (1994) 37-55.
2. C. Aykol, V. S. Guliyev, A. Şerbetçi, The O’Neil inequality for the Hankel convolution operator and some applications, Eurasian Math. J. 4 (2013) 8-19.
3. C. Aykol, A. Şerbetçi, On the boundedness of fractional B−maximal operators in the Lorentz spaces Lp,q,γ(Rn+), An. St. Univ. Ovidius Constanta 17 (2009) 27-38.
4. C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988.
5. L. Diening, S. Samko, Hardy inequality in variable exponent Lebesgue spaces, Fract. Calc. Appl. Anal. 10 (2007) 1-18.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献