Discrepancy between distribution of alpha-synuclein oligomers and Lewy-related pathology in Parkinson’s disease

Author:

Sekiya HiroakiORCID,Tsuji Asato,Hashimoto Yuki,Takata Mariko,Koga Shunsuke,Nishida Katsuya,Futamura Naonobu,Kawamoto Michi,Kohara Nobuo,Dickson Dennis W.,Kowa Hisatomo,Toda Tatsushi

Abstract

AbstractThe pathological hallmarks of Parkinson’s disease (PD) are α-synuclein (αSYN)-positive inclusions referred to as Lewy bodies and Lewy neurites, collectively referred to as Lewy-related pathology (LRP). LRP is thought to propagate in an ascending manner throughout the brain as the disease progresses. LRP is visible with histologic methods and is thought to represent a later stage of the disease process, while αSYN oligomers, which are not visible with routine histologic methods, are considered earlier. There is increasing evidence to suggest that αSYN oligomers may be more toxic than visible LRP. Detecting αSYN oligomers requires special techniques, and their distribution and association with clinical features are important research objectives. In this report, we describe the distribution of αSYN oligomers in multiple cortical and subcortical regions of PD using a proximity ligation assay (PLA). We observe widespread distribution of αSYN oligomers with PLA and more restricted distribution of LRP with αSYN immunohistochemistry. The distribution of αSYN oligomers differed from LRP in that αSYN oligomer burden was significantly greater in the neocortex, while LRP was greater in vulnerable subcortical regions, including the brainstem. We also found that cognitive impairment was associated with αSYN oligomers in the hippocampus. These results suggest that αSYN oligomers may be widely distributed in PD early in the disease process and that they may contribute to cognitive impairment in PD.

Funder

Uehara Memorial Foundation

Japanese Society of Neurology

The Cell Science Research Foundation

Ministry of Health, Labour and Welfare

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3