Rapid and ultra-sensitive quantitation of disease-associated α-synuclein seeds in brain and cerebrospinal fluid by αSyn RT-QuIC

Author:

Groveman Bradley R.,Orrù Christina D.,Hughson Andrew G.,Raymond Lynne D.,Zanusso Gianluigi,Ghetti Bernardino,Campbell Katrina J.,Safar Jiri,Galasko Douglas,Caughey ByronORCID

Abstract

Abstract The diagnosis and treatment of synucleinopathies such as Parkinson disease and dementia with Lewy bodies would be aided by the availability of assays for the pathogenic disease-associated forms of α-synuclein (αSynD) that are sufficiently sensitive, specific, and practical for analysis of accessible diagnostic specimens. Two recent αSynD seed amplification tests have provided the first prototypes for ultrasensitive and specific detection of αSynD in patients’ cerebrospinal fluid. These prototypic assays require 5–13 days to perform. Here, we describe an improved α-synuclein real time quaking-induced conversion (αSyn RT-QuIC) assay that has similar sensitivity and specificity to the prior assays, but can be performed in 1–2 days with quantitation. Blinded analysis of cerebrospinal fluid from 29 synucleinopathy cases [12 Parkinson’s and 17 dementia with Lewy bodies] and 31 non-synucleinopathy controls, including 16 Alzheimer’s cases, yielded 93% diagnostic sensitivity and 100% specificity for this test so far. End-point dilution analyses allowed quantitation of relative amounts of αSynD seeding activity in cerebrospinal fluid samples, and detection in as little as 0.2 μL. These results confirm that αSynD seeding activity is present in cerebrospinal fluid. We also demonstrate that it can be rapidly detected, and quantitated, even in early symptomatic stages of synucleinopathy.

Funder

Intramural Research Program of the NIAID, NIH

Parkinson's and Movement Disorder Foundation

National Institutes of Health

Shiley-Marcos Alzheimer’s Disease Research Center at UCSD

National Institute on Aging

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3