Explicability of humanitarian AI: a matter of principles

Author:

Coppi GiulioORCID,Moreno Jimenez Rebeca,Kyriazi Sofia

Abstract

AbstractIn the debate on how to improve efficiencies in the humanitarian sector and better meet people’s needs, the argument for the use of artificial intelligence (AI) and automated decision-making (ADMs) systems has gained significant traction and ignited controversy for its ethical and human rights-related implications.Setting aside the implications of introducing unmanned and automated systems in warfare, we focus instead on the impact of the adoption of AI-based ADMs in humanitarian response. In order to maintain the status and protection conferred by the humanitarian mandate, aid organizations are called to abide by a broad set of rules condensed in the humanitarian principles and notably the principles of humanity, neutrality, impartiality, and independence. But how do these principles operate when decision-making is automated?This article opens with an overview of AI and ADMs in the humanitarian sector, with special attention to the concept of algorithmic opacity. It then explores the transformative potential of these systems on the complex power dynamics between humanitarians, principled assistance, and affected communities during acute crises. Our research confirms that the existing flaws in accountability and epistemic processes can be also found in the mathematical and statistical formulas and in the algorithms used for automation, artificial intelligence, predictive analytics, and other efficiency-gaining-related processes.In doing so, our analysis highlights the potential harm to people resulting from algorithmic opacity, either through removal or obfuscation of the causal connection between triggering events and humanitarian services through the so-called black box effect (algorithms are often described as black boxes, as their complexity and technical opacity hide and obfuscate their inner workings (Diakopoulos, Tow Center for Digital Journ, 2017). Recognizing the need for a humanitarian ethics dimension in the analysis of automation, AI, and ADMs used in humanitarian action, we endorse the concept of “explicability” as developed within the ethical framework of machine learning and human-computer interaction, together with a set of proxy metrics.Finally, we stress the need for developing auditable standards, as well as transparent guidelines and frameworks to rein in the risks of what has been defined as humanitarian experimentation (Sandvik, Jacobsen, and McDonald, Int. Rev. Red Cross 99(904), 319–344, 2017). This article concludes that accountability mechanisms for AI-based systems and ADMs used to respond to the needs of populations in situation of vulnerability should be an essential feature by default, in order to preserve the respect of the do no harm principle even in the digital dimension of aid.In conclusion, while we confirm existing concerns related to the adoption of AI-based systems and ADMs in humanitarian action, we also advocate for a roadmap towards humanitarian AI for the sector and introduce a tentative ethics framework as basis for future research.

Publisher

Springer Science and Business Media LLC

Reference133 articles.

1. Alston P (2019a) Brief as amicus curiae before the District Court of the Hague on the case of NJCM c.s./De Staat der Nederlanden (SyRI), case No. C/09/550982/ HA ZA 18/388. https://www.ohchr.org/Documents/Issues/Poverty/Amicusfinalversionsigned.pdf. Accessed on 30 Dec 2020.

2. Alston P (2019b) Extreme poverty and human rights. Report submitted in accordance with Human Rights Council resolution 35/19, UN - General Assembly. https://undocs.org/pdf?symbol=en/A/HRC/41/39/Add.1 . Accessed on 30 Dec 2020.

3. Balsari S (2019) Will AI help universalize health care? the BMJ. https://blogs.bmj.com/bmj/2019/09/23/satchit-balsari-will-ai-help-universalize-health-care/. Accessed 17 Mar 2021

4. Bellamy R, Dey K, Hind M, Hoffman SC, Houde S, Kannan K, Lohia P, Martino J, Mehta S, Mojsilovic A, Nagar S, Ramamurthy K, Richards JT, Saha D, Sattigeri P, Singh M, Varshney K, Zhang Y (2018). AI Fairness 360: An Extensible Toolkit for Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias. ArXiv, abs/1810.01943

5. Bengio Y, et al. (2019) A meta-transfer objective for learning to disentangle causal mechanisms. ArXiv e-print. https://arxiv.org/abs/1901.10912. Accessed on 10 Feb 2020.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3