Effects of storage time and temperature on the antimony and some trace element release from polyethylene terephthalate (PET) into the bottled drinking water

Author:

Molaee Aghaee Ebrahim,Alimohammadi Mahmood,Nabizadeh Ramin,Jahed khaniki Gholamreza,Naseri Simin,Mahvi Amir Hossein,Yaghmaeian Kamyar,Aslani Hassan,Nazmara Shahrokh,Mahmoudi Babak,Ghani Maryam

Abstract

Abstract Background and objectives Heavy metals are considered as one of the major contaminants that can enter into the bottled waters. Antimony (Sb) is a contaminant, which may leach from the polyethylene terephthalate (PET) bottles into the water. The aim of this study was to investigate the content of antimony and other trace elements in bottled waters which was kept in varied storage conditions and temperatures. Materials and methods Five time-temperature treatments were carried out on five different brands of commercially available bottled waters. Heavy metal measurement was performed by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) method. Analysis of the collected data was processed by SPSS software. Results Antimony concentration was the main concern in our study. The concentrations increased in each of the sample during storage period at all temperatures. The results for different conditions were as follow: at 40°C, in outdoor and at room temperature the Sb concentrations were below the MCLs, i e. 6 ppb. However, at 65°C and 80°C for longer storage times Sb concentration exceeded the MCLs, and variations between the samples were significant (p ≤ 0.05). Storage time and temperature effects on the content of some other trace elements such as Al, Fe were also significant (p ≤ 0.05). Conclusion By increasing the duration of storage time and temperatures, antimony leaching from the PET bottles into the bottled water increased. The concentration of Al demonstrated an increase in higher temperatures and storage duration, whereas the content of Fe demonstrated no significant differences.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal,Water Science and Technology,Applied Microbiology and Biotechnology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3