Abstract
AbstractAcoustic Emission (AE) application for Structural Health Monitoring (SHM) has undergone a swift advance through research and innovation in recent times. The AE monitoring is widely exploited as a tool for damage detection in materials research and structure monitoring. Various advantages of the AE, such as the potential use in large and complex structures, high-sensitivity, real-time monitoring capability, and potential application across a wide range of field study, has given the technique an edge over other approaches. Nevertheless, most of the reported studies had focused on the interpretation of the results in both quantitative and qualitative perspectives to extend the capabilities and application of AE for damage detection strategy. Eventually, the quantification of the damage level of the concrete structure relative to fatigue loading remained unanswered. Therefore, this study presented the experimental investigation of four types of plain concrete beams with a fixed dimension of 100 × 200 × 600 mm in the different notch-to-depth ratios under cyclic loading. A setup of the instrument consisting of four AE sensors type R6I was employed on each concrete beam sample to ensure a precise measurement for the three-point bending test. The b-value, improved b-value (Ib-value), severity, and intensity analysis methods were applied to quantify the damage level of the concrete structure under fatigue loading. Based on the results, the AE analysis successfully classified the damage levels following the observation made during the increasing cyclic loading on the notched concrete beams, the initiation of cracks, the steady growth of cracks, and beam failure. Valuable insights were recorded throughout the observation, including the progression of the fatigue failure mechanism from the Ib-value results, the intensity chart patterns from the intensity analysis, and the increased severity due to the increased loading cycles from the severity analysis. Conclusively, this study would enable researchers to understand the trend in monitoring the damage level under fatigue loading using the AE technique as well as providing fresh insights for further research.
Funder
Ministry of Higher Education Malaysia
Publisher
Springer Science and Business Media LLC
Subject
Ocean Engineering,Civil and Structural Engineering
Reference56 articles.
1. Aggelis, D. G. (2011). Classification of cracking mode in concrete by acoustic emission parameters. Mechanics Research Communications, 38(3), 153–157.
2. Angelis, T. G., Shiotani, T., Momoki, S., & Hirama, A. (2009). Acoustic emission and ultrasound for damage characterization of concrete elements. ACI Materials Journal, 106(6), 1–6.
3. Antonaci, P., Bocca, P., & Masera, D. (2012). Fatigue crack propagation monitoring by Acoustic Emission signal analysis. Engineering Fracture Mechanics, 81, 26–32.
4. American Society for Testing and Material. (2006). ASTM E 2478:2006. Standard practice for determining damage-based design stress for fiberglass reinforced plastic (FRP) materials using acoustic emission. West 203 Conshohocken, Pennsylvania: ASTM International, p. 6.
5. Baqersad, J., Niezrecki, C., & Avitabile, P. (2015). Full-field dynamic strain prediction on a wind turbine using displacements of optical targets measured by stereophotogrammetry. Mechanical Systems and Signal Processing, 62, 284–295.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献