Acoustic Emission Monitoring for Damage Assessment of a Magnetite Ultra-High-Performance Concrete (MUHPC) Block in a Bending Test

Author:

Bourbour Cyrus1

Affiliation:

1. School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China

Abstract

Ultra-high-performance concrete (UHPC) is widely used because of its exceptional properties, such as high compressive and flexural strength, low permeability, and resistance to abrasion and chemical attack. It is commonly employed for intricate constructions like skyscrapers, precast concrete components, and infrastructure. Nevertheless, the incorporation of appropriate fibers into UHPC is carried out in order to accomplish objectives such as augmenting strength, enhancing toughness, and regulating cracking. This study employed magnetite as an additive to a UHPC block in order to examine the mechanical characteristics of a newly cast UHPC block. Acoustic emission was employed to evaluate the damage to the UHPC block for tracking purposes. Acoustic emission is a non-invasive testing technique that does not cause harm to the specimen when it is exposed to a load. On the basis of this, many critical locations that indicated the propagation of cracks were analyzed, as well as various loading stages across the specimen. The b-value is a method that can evaluate the extent of damage by analyzing the amplitude distribution. Distinct paths of b-values were noted for each loading stage, indicating major damage scenarios based on their slopes.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3