Utilizing an artificial intelligence framework (conditional generative adversarial network) to enhance telemedicine strategies for cancer pain management

Author:

Cascella MarcoORCID,Scarpati Giuliana,Bignami Elena Giovanna,Cuomo Arturo,Vittori Alessandro,Di Gennaro Piergiacomo,Crispo Anna,Coluccia Sergio

Abstract

Abstract Background The utilization of artificial intelligence (AI) in healthcare has significant potential to revolutionize the delivery of medical services, particularly in the field of telemedicine. In this article, we investigate the capabilities of a specific deep learning model, a generative adversarial network (GAN), and explore its potential for enhancing the telemedicine approach to cancer pain management. Materials and methods We implemented a structured dataset comprising demographic and clinical variables from 226 patients and 489 telemedicine visits for cancer pain management. The deep learning model, specifically a conditional GAN, was employed to generate synthetic samples that closely resemble real individuals in terms of their characteristics. Subsequently, four machine learning (ML) algorithms were used to assess the variables associated with a higher number of remote visits. Results The generated dataset exhibits a distribution comparable to the reference dataset for all considered variables, including age, number of visits, tumor type, performance status, characteristics of metastasis, opioid dosage, and type of pain. Among the algorithms tested, random forest demonstrated the highest performance in predicting a higher number of remote visits, achieving an accuracy of 0.8 on the test data. The simulations based on ML indicated that individuals who are younger than 45 years old, and those experiencing breakthrough cancer pain, may require an increased number of telemedicine-based clinical evaluations. Conclusion As the advancement of healthcare processes relies on scientific evidence, AI techniques such as GANs can play a vital role in bridging knowledge gaps and accelerating the integration of telemedicine into clinical practice. Nonetheless, it is crucial to carefully address the limitations of these approaches.

Publisher

Springer Science and Business Media LLC

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3