DeepGAN: Utilizing generative adversarial networks for improved deep learning

Author:

V Edward Naveen1,A Jenefa2,T.M Thiyagu3,A Lincy4,Taurshia Antony2

Affiliation:

1. Department of Computer Science and Engineering, Sri Shakthi Institute of Engineering and Technology, India

2. Department of Computer Science and Engineering, Karunya Institute of Technology and Sciences, India

3. Division of Computer Science and Engineering, Karunya Institute of Technology and Sciences, India

4. Department of Computer Science and Engineering, National Engineering College, India

Abstract

In the realm of deep learning, Generative Adversarial Networks (GANs) have emerged as a topic of significant interest for their potential to enhance model performance and enable effective data augmentation. This paper addresses the existing challenges in synthesizing high-quality data and harnessing the capabilities of GANs for improved deep learning outcomes. Unlike traditional approaches that heavily rely on manually engineered data augmentation techniques, our work introduces a novel framework that leverages DeepGANs to autonomously generate diverse and high-fidelity data. Our experiments encompass a diverse spectrum of datasets, including images, text, and time series data. In the context of image classification tasks, we conduct experiments on the widely recognized CIFAR-10 dataset, which consists of 50,000 image samples. Our results demonstrate the remarkable efficacy of DeepGANs in enhancing model performance across various data domains. Notably, in image classification using the CIFAR-10 dataset, our innovative approach achieves an impressive accuracy of 97.2%. This represents a substantial advancement beyond conventional CNN models, underscoring the profound impact of DeepGANs in the realm of deep learning. In summary, this research sheds light on DeepGANs as a fundamental component in the pursuit of enhanced deep learning performance. Our framework not only overcomes existing limitations but also heralds a new era of data augmentation, with generative adversarial networks leading the way. The attainment of an accuracy rate of 97.2% on CIFAR-10 serves as a compelling testament to the transformative potential of DeepGANs, solidifying their pivotal role in the future of deep learning. This promises the development of more robust, adaptive, and accurate models across a myriad of applications, marking a significant contribution to the field.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3