Affiliation:
1. Department of Computer Science and Engineering, Sri Shakthi Institute of Engineering and Technology, India
2. Department of Computer Science and Engineering, Karunya Institute of Technology and Sciences, India
3. Division of Computer Science and Engineering, Karunya Institute of Technology and Sciences, India
4. Department of Computer Science and Engineering, National Engineering College, India
Abstract
In the realm of deep learning, Generative Adversarial Networks (GANs) have emerged as a topic of significant interest for their potential to enhance model performance and enable effective data augmentation. This paper addresses the existing challenges in synthesizing high-quality data and harnessing the capabilities of GANs for improved deep learning outcomes. Unlike traditional approaches that heavily rely on manually engineered data augmentation techniques, our work introduces a novel framework that leverages DeepGANs to autonomously generate diverse and high-fidelity data. Our experiments encompass a diverse spectrum of datasets, including images, text, and time series data. In the context of image classification tasks, we conduct experiments on the widely recognized CIFAR-10 dataset, which consists of 50,000 image samples. Our results demonstrate the remarkable efficacy of DeepGANs in enhancing model performance across various data domains. Notably, in image classification using the CIFAR-10 dataset, our innovative approach achieves an impressive accuracy of 97.2%. This represents a substantial advancement beyond conventional CNN models, underscoring the profound impact of DeepGANs in the realm of deep learning. In summary, this research sheds light on DeepGANs as a fundamental component in the pursuit of enhanced deep learning performance. Our framework not only overcomes existing limitations but also heralds a new era of data augmentation, with generative adversarial networks leading the way. The attainment of an accuracy rate of 97.2% on CIFAR-10 serves as a compelling testament to the transformative potential of DeepGANs, solidifying their pivotal role in the future of deep learning. This promises the development of more robust, adaptive, and accurate models across a myriad of applications, marking a significant contribution to the field.