MRI adipose tissue segmentation and quantification in R (RAdipoSeg)

Author:

Haugen Christine,Lysne Vegard,Haldorsen Ingfrid,Tjora Erling,Gudbrandsen Oddrun Anita,Sagen Jørn Vegard,Dankel Simon N.,Mellgren GunnarORCID

Abstract

Abstract Background Excess adipose tissue is associated with increased cardiovascular and metabolic risk, but the volume of visceral and subcutaneous adipose tissue poses different metabolic risks. MRI with fat suppression can be used to accurately quantify adipose depots. We have developed a new semi-automatic method, RAdipoSeg, for MRI adipose tissue segmentation and quantification in the free and open source statistical software R. Methods MRI images were obtained from wild-type mice on high- or low-fat diet, and from 20 human subjects without clinical signs of metabolic dysfunction. For each mouse and human subject, respectively, 10 images were segmented with RAdipoSeg and with the commercially available software SliceOmatic. Jaccard difference, relative volume difference and Spearman’s rank correlation coefficients were calculated for each group. Agreement between the two methods were analysed with Bland–Altman plots. Results RAdipoSeg performed similarly to the commercial software. The mean Jaccard differences were 10–29% and the relative volume differences were below ( ±) 20%. Spearman’s rank correlation coefficient gave p-values below 0.05 for both mouse and human images. The Bland–Altman plots indicated some systematic and proporitional bias, which can be countered by the flexible nature of the method. Conclusion RAdipoSeg is a reliable and low cost method for fat segmentation in studies of mice and humans.

Funder

Helse Vest Regionalt Helseføretak

Trond Mohn Foundation

University of Bergen

Publisher

Springer Science and Business Media LLC

Subject

Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3