Advancing healthcare with artificial intelligence: diagnostic accuracy of machine learning algorithm in diagnosis of diabetic retinopathy in the Brazilian population

Author:

dos Reis Mateus A.,Künas Cristiano A.,da Silva Araújo Thiago,Schneiders Josiane,de Azevedo Pietro B.,Nakayama Luis F.,Rados Dimitris R. V.,Umpierre Roberto N.,Berwanger Otávio,Lavinsky Daniel,Malerbi Fernando K.,Navaux Philippe O. A.,Schaan Beatriz D.

Abstract

Abstract Background In healthcare systems in general, access to diabetic retinopathy (DR) screening is limited. Artificial intelligence has the potential to increase care delivery. Therefore, we trained and evaluated the diagnostic accuracy of a machine learning algorithm for automated detection of DR. Methods We included color fundus photographs from individuals from 4 databases (primary and specialized care settings), excluding uninterpretable images. The datasets consist of images from Brazilian patients, which differs from previous work. This modification allows for a more tailored application of the model to Brazilian patients, ensuring that the nuances and characteristics of this specific population are adequately captured. The sample was fractionated in training (70%) and testing (30%) samples. A convolutional neural network was trained for image classification. The reference test was the combined decision from three ophthalmologists. The sensitivity, specificity, and area under the ROC curve of the algorithm for detecting referable DR (moderate non-proliferative DR; severe non-proliferative DR; proliferative DR and/or clinically significant macular edema) were estimated. Results A total of 15,816 images (4590 patients) were included. The overall prevalence of any degree of DR was 26.5%. Compared with human evaluators (manual method of diagnosing DR performed by an ophthalmologist), the deep learning algorithm achieved an area under the ROC curve of 0.98 (95% CI 0.97–0.98), with a specificity of 94.6% (95% CI 93.8–95.3) and a sensitivity of 93.5% (95% CI 92.2–94.9) at the point of greatest efficiency to detect referable DR. Conclusions A large database showed that this deep learning algorithm was accurate in detecting referable DR. This finding aids to universal healthcare systems like Brazil, optimizing screening processes and can serve as a tool for improving DR screening, making it more agile and expanding care access.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3