Validation of machine learning models for estimation of left ventricular ejection fraction on point-of-care ultrasound: insights on features that impact performance

Author:

Luong Christina L.,Jafari Mohammad H.,Behnami Delaram,Shah Yaksh R.,Straatman Lynn,Van Woudenberg Nathan,Christoff Leah,Gwadry Nancy,Hawkins Nathaniel M.,Sayre Eric C.,Yeung Darwin,Tsang Michael,Gin Ken,Jue John,Nair Parvathy,Abolmaesumi Purang,Tsang Teresa

Abstract

Abstract Background Machine learning (ML) algorithms can accurately estimate left ventricular ejection fraction (LVEF) from echocardiography, but their performance on cardiac point-of-care ultrasound (POCUS) is not well understood. Objectives We evaluate the performance of an ML model for estimation of LVEF on cardiac POCUS compared with Level III echocardiographers’ interpretation and formal echo reported LVEF. Methods Clinicians at a tertiary care heart failure clinic prospectively scanned 138 participants using hand-carried devices. Video data were analyzed offline by an ML model for LVEF. We compared the ML model's performance with Level III echocardiographers' interpretation and echo reported LVEF. Results There were 138 participants scanned, yielding 1257 videos. The ML model generated LVEF predictions on 341 videos. We observed a good intraclass correlation (ICC) between the ML model's predictions and the reference standards (ICC = 0.77–0.84). When comparing LVEF estimates for randomized single POCUS videos, the ICC between the ML model and Level III echocardiographers' estimates was 0.772, and it was 0.778 for videos where quantitative LVEF was feasible. When the Level III echocardiographer reviewed all POCUS videos for a participant, the ICC improved to 0.794 and 0.843 when only accounting for studies that could be segmented. The ML model's LVEF estimates also correlated well with LVEF derived from formal echocardiogram reports (ICC = 0.798). Conclusion Our results suggest that clinician-driven cardiac POCUS produces ML model LVEF estimates that correlate well with expert interpretation and echo reported LVEF.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3