Automatic cine-based detection of patients at high risk of heart failure with reduced ejection fraction in echocardiograms
Author:
Affiliation:
1. Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, Canada
2. Vancouver Coastal Health, Vancouver, Canada
3. Department of Cardiology, University of British Columbia, Vancouver, Canada
Funder
Canadian Institutes of Health Research
Publisher
Informa UK Limited
Subject
Computer Science Applications,Radiology, Nuclear Medicine and imaging,Biomedical Engineering,Computational Mechanics
Link
https://www.tandfonline.com/doi/pdf/10.1080/21681163.2019.1650398
Reference27 articles.
1. Automatic Detection of Patients with a High Risk of Systolic Cardiac Failure in Echocardiography
2. A study investigating variability of left ventricular ejection fraction using manual and automatic processing modes in a single setting
3. Mortality in heart failure patients
4. Echocardiographic assessment of left ventricular systolic function: from ejection fraction to torsion
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Validation of machine learning models for estimation of left ventricular ejection fraction on point-of-care ultrasound: insights on features that impact performance;Echo Research & Practice;2024-03-28
2. Automatic classification of heart failure based on Cine-CMR images;International Journal of Computer Assisted Radiology and Surgery;2023-11-03
3. Real-time guiding by deep learning during echocardiography to reduce left ventricular foreshortening and measurement variability;European Heart Journal - Imaging Methods and Practice;2023-05
4. Detecting Left Heart Failure in Echocardiography through Machine Learning: A Systematic Review;Reviews in Cardiovascular Medicine;2022-12-12
5. Deep-learning-assisted analysis of echocardiographic videos improves predictions of all-cause mortality;Nature Biomedical Engineering;2021-02-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3