Modeling the internet of things: a hybrid modeling approach using complex networks and agent-based models

Author:

Batool Komal,Niazi Muaz A.

Abstract

AbstractSensors, coupled with transceivers, have quickly evolved from technologies purely confined to laboratory test beds to workable solutions used across the globe. These mobile and connected devices form the nuts and bolts required to fulfill the vision of the so-called internet of things (IoT). This idea has evolved as a result of proliferation of electronic gadgets fitted with sensors and often being uniquely identifiable (possible with technological solutions such as the use of Radio Frequency Identifiers). While there is a growing need for comprehensive modeling paradigms as well as example case studies for the IoT, currently there is no standard methodology available for modeling such real-world complex IoT-based scenarios. Here, using a combination of complex networks-based and agent-based modeling approaches, ​we present a novel approach to modeling the IoT. Specifically, the proposed approach uses the Cognitive Agent-Based Computing (CABC) framework to simulate complex IoT networks. We demonstrate modeling of several standard complex network topologies such as lattice, random, small-world, and scale-free networks. To further demonstrate the effectiveness of the proposed approach, we also present a case study and a novel algorithm for autonomous monitoring of power consumption in networked IoT devices. We also discuss and compare the presented approach with previous approaches to modeling. Extensive simulation experiments using several network configurations demonstrate the effectiveness and viability of the proposed approach.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Modelling and Simulation

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI and Robots Impact on Space Exploration;Advances in Astronautics Science and Technology;2024-02-01

2. Issues in IoT traffic modelling and analysis;AIP Conference Proceedings;2024

3. Tolerance Analysis of Cyber-Manufacturing Systems to Cascading Failures;ACM Transactions on Internet Technology;2023-11-17

4. More Accurate Cost Estimation for Internet of Things Projects by Adaptation of Use Case Points Methodology;IEEE Internet of Things Journal;2023-11-01

5. Technological Organization of Model Investigation;Deterministic and Stochastic Approaches in Computer Modeling and Simulation;2023-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3