Towards internet of things modeling: a gateway approach

Author:

Altamimi Ahmed B.,Ramadan Rabie A.

Abstract

Abstract Purpose Internet of things (IoT) is an interaction between more than one network to facilitate communication. These networks by themselves are complex networks. Therefore, IoT network is expected to grow at unprecedented scale involving other networks such as Mobile, VANET, and Wireless Sensor Networks (WSNs). In fact, modeling each network by itself is a complicated process. In addition, on a large scale, the communication among these networks increases the modeling complexity in which energy consumption could be critical due to large number of dropped messages. Therefore, this paper is a step forward towards modeling IoT complex network through gateway deployment. The paper answers the question of how to deploy these gateways in a way that guarantees an efficient and adaptive communication. Methods Two models/methods are proposed and examined which are geographical based and mobile ferry based models. Due to the complexity of the deployment problem in reality, the deployment problem is treated as a complex adaptive problem and simulated through different sets of experiments and settings. Results The two methods have been compared through set of experiments using ONE simulator with the same number of employed gateways in the two methods. The experiments shows that ferry based model outperforms geographical based model with 29% improvement in messages delivery probability. Additionally, when the number of mobile ferries are reduced by 34% compared to gateways that are distributed based on geographical area, the mobile ferries approach still outperform geographical area based approach when it comes to messages delivery probability. Conclusions The paper presents the two methods to model the complex internet of things environment and its sub networks interaction. The paper concludes that employing mobile ferries as gateways is better than deploying gateways based on geographical area when the sub networks interaction is facilitated in IoT network.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Modelling and Simulation

Reference47 articles.

1. Al Ayubi S (2209) A framework of spreading disease monitoring system model. In: International conference on instrumentation, communications, information technology, and biomedical engineering (ICICI-BME). pp 1–5, 23–25

2. Altamimi A, Gulliver T (2012) On routing protocols using mobile social networks. Int J Wirel Mobile Comput 7(3):1–11

3. Aoun B, Boutaba R, Iraqi Y, Kenward G (2006) Gateway placement optimization in wireless mesh networks with QoS constraints. IEEE J Sel Areas Commun 24(11):2127–2136

4. Bellavista P, Cardone G, Corradi A, Foschini L (2013) Convergence of MANET and WSN in IoT urban scenarios. IEEE Sens J 13(10):3558–3567

5. Benyamina D, Hafid A, Gendreau M (2009) Optimal placement of gateways in multi-hop wireless mesh networks: a clustering-based approach. In: IEEE 34th conference on local computer networks. pp 625–632

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3