Dietary Enteromorpha polysaccharide-Zn supplementation regulates amino acid and fatty acid metabolism by improving the antioxidant activity in chicken

Author:

Wassie Teketay,Duan Xinyi,Xie Chunyan,Wang Ruxia,Wu Xin

Abstract

Abstract Background Enteromorpha prolifera (E. prolifera) polysaccharide has become a promising feed additive with a variety of physiological activities, such as anti-oxidant, anti-cancer, anti-diabetic, immunomodulatory, hypolipidemic, and cation chelating ability. However, whether Enteromorpha polysaccharide-trace element complex supplementation regulates amino acid and fatty acid metabolism in chicken is largely unknown. This study was conducted to investigate the effects of E. prolifera polysaccharide (EP)-Zn supplementation on growth performance, amino acid, and fatty acid metabolism in chicken. Methods A total of 184 one-day-old Ross-308 broiler chickens were randomly divided into two treatment groups with 8 replicates, 12 chickens per replicate, and fed either the basal diet (control group) or basal diet plus E. prolifera polysaccharide-Zinc (400 mg EP-Zn/kg diet). Results Dietary EP-Zn supplementation significantly increased (P < 0.05) the body weight, average daily gain, muscle antioxidant activity, serum HDL level, and reduced serum TG and LDL concentration. In addition, dietary EP-Zn supplementation could modulate ileal amino acid digestibility and upregulate the mRNA expression of amino acid transporter genes in the jejunum, ileum, breast muscle, and liver tissues (P < 0.05). Compared with the control group, breast meat from chickens fed EP-Zn had higher (P < 0.05) Pro and Asp content, and lower (P < 0.05) Val, Phe, Gly, and Cys free amino acid content. Furthermore, EP-Zn supplementation upregulated (P < 0.05) the mRNA expressions of mTOR and anti-oxidant related genes, while down-regulated protein degradation related genes in the breast muscle. Breast meat from EP-Zn supplemented group had significantly lower (P < 0.05) proportions of Σn-3 PUFA, and a higher percentage of Σn-6 PUFA and the ratio of n-6/n-3 PUFA. Besides, EP-Zn supplementation regulated lipid metabolism by inhibiting the gene expression of key enzymes involved in the fatty acid synthesis and activating genes that participated in fatty acid oxidation in the liver tissue. Conclusions It is concluded that EP-Zn complex supplementation regulates apparent ileal amino acid digestibility, enhances amino acid metabolism, and decreases oxidative stress-associated protein breakdown, thereby improving the growth performance. Furthermore, it promotes fatty acid oxidation and restrains fat synthesis through modulating lipid metabolism-related gene expression. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3