High rumen degradable starch decreased goat milk fat via trans-10, cis-12 conjugated linoleic acid-mediated downregulation of lipogenesis genes, particularly, INSIG1

Author:

Zheng Lixin,Wu Shengru,Shen Jing,Han Xiaoying,Jin Chunjia,Chen Xiaodong,Zhao Shengguo,Cao Yangchun,Yao JunhuORCID

Abstract

Abstract Background Starch is an important substance that supplies energy to ruminants. To provide sufficient energy for high-yielding dairy ruminants, they are typically fed starch-enriched diets. However, starch-enriched diets have been proven to increase the risk of milk fat depression (MFD) in dairy cows. The starch present in ruminant diets could be divided into rumen-degradable starch (RDS) and rumen escaped starch (RES) according to their different degradation sites (rumen or intestine). Goats and cows have different sensitivities to MFD. Data regarding the potential roles of RDS in milk fat synthesis in the mammary tissue of dairy goats and in regulating the occurrence of MFD are limited. Results Eighteen Guanzhong dairy goats (day in milk = 185 ± 12 d) with similar parity, weight, and milk yield were selected and randomly assigned to one of three groups (n = 6), which were fed an LRDS diet (Low RDS = 20.52%), MRDS diet (Medium RDS = 22.15%), or HRDS diet (High RDS = 24.88%) for 5 weeks. Compared with that of the LRDS group, the milk fat contents in the MRDS and HRDS groups significantly decreased. The yields of short-, medium- and long-chain fatty acids decreased in the HRDS group. Furthermore, increased RDS significantly decreased ruminal B. fibrisolvens and Pseudobutyrivibrio abundances and increased the trans-10, cis-12 conjugated linoleic acid (CLA) and trans-10 C18:1 contents in the rumen fluid. A multiomics study revealed that the HRDS diet affected mammary lipid metabolism down-regulation of ACSS2, MVD, AGPS, SCD5, FADS2, CERCAM, SC5D, HSD17B7, HSD17B12, ATM, TP53RK, GDF1 and LOC102177400. Remarkably, the significant decrease of INSIG1, whose expression was depressed by trans-10, cis-12 CLA, could reduce the activity of SREBP and, consequently, downregulate the downstream gene expression of SREBF1. Conclusions HRDS-induced goat MFD resulted from the downregulation of genes involved in lipogenesis, particularly, INSIG1. Specifically, even though the total starch content and the concentrate-to-fiber ratio were the same as those of the high-RDS diet, the low and medium RDS diets did not cause MFD in lactating goats.

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3