Transcription factor EB (TFEB)-mediated autophagy protects bovine mammary epithelial cells against H2O2-induced oxidative damage in vitro

Author:

Sun Xudong,Chang Renxu,Tang Yan,Luo Shengbin,Jiang Chunhui,Jia Hongdou,Xu Qiushi,Dong Zhihao,Liang Yusheng,Loor Juan J.,Xu ChuangORCID

Abstract

Abstract Background Bovine mammary epithelial cells after calving undergo serious metabolic challenges and oxidative stress both of which could compromise autophagy. Transcription factor EB (TFEB)-mediated autophagy is an important cytoprotective mechanism against oxidative stress. However, effects of TFEB-mediated autophagy on the oxidative stress of bovine mammary epithelial cells remain unknown. Therefore, the main aim of the study was to investigate the role of TFEB-mediated autophagy in bovine mammary epithelial cells experiencing oxidative stress. Results H2O2 challenge of the bovine mammary epithelial cell MAC-T increased protein abundance of LC3-II, increased number of autophagosomes and autolysosomes while decreased protein abundance of p62. Inhibition of autophagy via bafilomycin A1 aggravated H2O2-induced reactive oxygen species (ROS) accumulation and apoptosis in MAC-T cells. Furthermore, H2O2 treatment triggered the translocation of TFEB into the nucleus. Knockdown of TFEB by siRNA reversed the effect of H2O2 on protein abundance of LC3-II and p62 as well as the number of autophagosomes and autolysosomes. Overexpression of TFEB activated autophagy and attenuated H2O2-induced ROS accumulation. Furthermore, TFEB overexpression attenuated H2O2-induced apoptosis by downregulating the caspase apoptotic pathway. Conclusions Our results indicate that activation of TFEB mediated autophagy alleviates H2O2-induced oxidative damage by reducing ROS accumulation and inhibiting caspase-dependent apoptosis.

Funder

National Natural Science Foundation of China

Project funded by China Postdoctoral Science Foundation

Heilongjiang Provincial Postdoctoral Science Foundation

Personnel Foundation in Heilongjiang Bayi Agricultural University

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3