Affiliation:
1. College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
2. Institute of Animal Health Products, Zhejiang Vegamax Biotechnology Co., Ltd., Anji 313300, China
Abstract
The small intestine is important to the digestion and absorption of rumen undegradable nutrients, as well as the barrier functionality and immunological responses in ruminants. Oxidative stress induces a spectrum of pathophysiological symptoms and nutritional deficits, causing various gastrointestinal ailments. Previous studies have shown that nicotinamide (NAM) has antioxidant properties, but the potential mechanism has not been elucidated. The aim of this study was to explore the effects of NAM on hydrogen peroxide (H2O2)-induced oxidative injury in bovine intestinal epithelial cells (BIECs) and its potential mechanism. The results showed that NAM increased the cell viability and total antioxidant capacity (T-AOC) and decreased the release of lactate dehydrogenase (LDH) in BIECs challenged by H2O2. The NAM exhibited increased expression of catalase, superoxide dismutase 2, and tight junction proteins. The expression of autophagy-related proteins was increased in BIECs challenged by H2O2, and NAM significantly decreased the expression of autophagy-related proteins. When an autophagy-specific inhibitor was used, the oxidative injury in BIECs was not alleviated by NAM, and the T-AOC and the release of LDH were not affected. Collectively, these results indicated that NAM could alleviate oxidative injury in BIECs by enhancing antioxidant capacity and increasing the expression of tight junction proteins, and autophagy played a crucial role in the alleviation.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Zhejiang Provincial Leading Innovation and Entrepreneurship Team Project