Heat stress in pigs and broilers: role of gut dysbiosis in the impairment of the gut-liver axis and restoration of these effects by probiotics, prebiotics and synbiotics

Author:

Ringseis RobertORCID,Eder Klaus

Abstract

AbstractHeat stress is one of the most challenging stressors for animal production due to high economic losses resulting from impaired animal’s productivity, health and welfare. Despite the fact that all farm animal species are susceptible to heat stress, birds and pigs are particularly sensitive to heat stress due to either lacking or non-functional sweat glands. Convincing evidence in the literature exists that gut dysbiosis, a term used to describe a perturbation of commensal gut microbiota, develops in broilers and pigs under heat stress. Owing to the protective role of commensal bacteria for the gut barrier, gut dysbiosis causes a disruption of the gut barrier leading to endotoxemia, which contributes to the typical characteristics of heat stressed broilers and growing and growing-finishing pigs, such as reduced feed intake, decreased growth and reduced lean carcass weight. A substantial number of studies have shown that feeding of probiotics, prebiotics and synbiotics is an efficacious strategy to protect broilers from heat stress-induced gut barrier disruption through altering the gut microbiota and promoting all decisive structural, biochemical, and immunological elements of the intestinal barrier. In most of the available studies in heat stressed broilers, the alterations of gut microbiota and improvements of gut barrier function induced by feeding of either probiotics, prebiotics or synbiotics were accompanied by an improved productivity, health and/or welfare when compared to non-supplemented broilers exposed to heat stress. These findings indicate that the restoration of gut homeostasis and function is a key target for dietary interventions aiming to provide at least partial protection of broilers from the detrimental impact of heat stress conditions. Despite the fact that the number of studies dealing with the same feeding strategy in heat stressed pigs is limited, the available few studies suggest that feeding of probiotics might also be a suitable approach to enhance productivity, health and welfare in pigs kept under heat stress conditions. 

Funder

Justus-Liebig-Universität Gießen

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Biochemistry,Food Science,Biotechnology

Reference111 articles.

1. Lara LJ, Rostagno MH. Impact of heat stress on poultry production. Animals (Basel). 2013;3(2):356–69.

2. Renaudeau D, Gourdine JL, St-Pierre NR. A meta-analysis of the effects of high ambient temperature on growth performance of growing-finishing pigs. J Anim Sci. 2011;89(7):2220–30.

3. Pollman DS. Seasonal effects on sow herds: industry experience and management strategies. J Anim Sci. 2010;88(Suppl 3):9.

4. Key N, Sneeringer S. Potential effects of climate change on the productivity of U.S. dairies. Am J Agric Econ. 2014;96:1136–56.

5. The Core Writing Team, Pachauri RK, Meyer LA. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC; 2015.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3