Monomodular and multifunctional processive endocellulases: implications for swine nutrition and gut microbiome

Author:

Fan Ming Z.,Cheng Laurence,Wang Min,Chen Jiali,Fan Wenyi,Jashari Fatmira,Wang Weijun

Abstract

AbstractPoor efficiency of dietary fibre utilization not only limits global pork production profit margin but also adversely affects utilization of various dietary nutrients. Poor efficiency of dietary nutrient utilization further leads to excessive excretion of swine manure nutrients and results in environmental impacts of emission of major greenhouse gases (GHG), odor, nitrate leaching and surface-water eutrophication. Emission of the major GHG from intensive pork production contributes to global warming and deteriorates heat stress to pigs in tropical and sub-tropical swine production. Exogenous fibre enzymes of various microbial cellulases, hemicellulases and pectinases have been well studied and used in swine production as the non-nutritive gut modifier feed enzyme additives in the past over two decades. These research efforts have aimed to improve growth performance, nutrient utilization, intestinal fermentation as well as gut physiology, microbiome and health via complementing the porcine gut symbiotic microbial fibrolytic activities towards dietary fibre degradation. The widely reported exogenous fibre enzymes include the singular use of respective cellulases, hemicellulases and pectinases as well as their multienzyme cocktails. The currently applied exogenous fibre enzymes are largely limited by their inconsistent in vivo efficacy likely due to their less defined enzyme stability and limited biochemical property. More recently characterized monomodular, multifunctional and processive endoglucanases have the potential to be more efficaciously used as the next-generation designer fibre biocatalysts. These newly emerging multifunctional and processive endoglucanases have the potential to unleash dietary fibre sugar constituents as metabolic fuels and prebiotics, to optimize gut microbiome, to maintain gut permeability and to enhance performance in pigs under a challenged environment as well as to parallelly unlock biomass to manufacture biofuels and biomaterials.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3