Debranching enzymes decomposed corn arabinoxylan into xylooligosaccharides and achieved prebiotic regulation of gut microbiota in broiler chickens

Author:

Wu Wei,Zhou Huajin,Chen Yanhong,Guo Yuming,Yuan Jianmin

Abstract

Abstract Background Corn arabinoxylan (AX) is a complicated and multibranched antinutritional factor, thereby proving the use of endo-xylanase (EX) to be marginally valid. This study focused on specific types of AX-degrading enzymes (ADEs) to exert the synergy of debranching enzymes and track the prebiotic potential of enzymatic hydrolysates. This study investigated the effects of ADEs on the growth performance, intestinal histomorphology, absorption functions, changes in polysaccharide components, fermentation, and gut microbiota of broiler chickens. Five hundred seventy-six five-day-old Arbor Acres male broiler chickens were randomly allocated into eight treatments with six replicates each. Corn basal diets supplemented with or without enzymes were fed for a 21-day period, specifically including EX, its compatible use with arabinofuranosidase (EXA) or ferulic acid esterase (EXF), and compound groups with the above three enzymes (XAF). Results Specific ADEs stimulated the jejunal villus height and goblet cell number and evidently decreased the crypt depth (P < 0.05), while the ratio of ileal villus height to crypt depth was significantly increased in EXF (P < 0.05). Maltase activities of ileal mucosa in XAF groups were extremely enhanced (P < 0.01), and EX boosted the activity of Na+-K+ ATPase in the small intestine (P < 0.01). The insoluble AX concentrations comparatively lessened, thereby notably raising the sundry xylooligosaccharide (XOS) yield in the ileal chyme (P < 0.05), which was dominant in xylobiose and xylotriose. Improvements in the abundance and diversity of ileal microbial communities within the EXA, EXF, and XAF treatments were observed (P < 0.05). Positive correlations between microbiota and XOS were revealed, with xylobiose and xylotriose being critical for ten beneficial bacteria (P < 0.05). EXF increased the BWG and FCR of broiler chickens in this phase (P < 0.05), which was attributed to the thriving networks modified by Lactobacillus. The intracecal contents of acetic acid, butyric acid, and propionic acid were greatly enhanced in most ADE groups, such as EXF (P < 0.05). Conclusions Debranching enzymes appreciably targeted corn AX to release prebiotic XOS in the posterior ileum and facilitated intracaecal fermentation. It was beneficial for improving gut development, digestion and absorption and modulating the microflora to promote the early performance of broiler chickens. Graphical Abstract

Funder

System for Poultry Production Technology, Beijing Agriculture Innovation Consortium

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Biochemistry,Food Science,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3