Dietary supplementation with xylooligosaccharides and exogenous enzyme improves milk production, energy utilization efficiency and reduces enteric methane emissions of Jersey cows

Author:

Dong LifengORCID,Zhao Lei,Li Bowei,Gao Yanhua,Yan Tianhai,Lund Peter,Liu Zhuofan,Diao Qiyu

Abstract

Abstract Background Sustainable strategies for enteric methane (CH4) mitigation of dairy cows have been extensively explored to improve production performance and alleviate environmental pressure. The present study aimed to investigate the effects of dietary xylooligosaccharides (XOS) and exogenous enzyme (EXE) supplementation on milk production, nutrient digestibility, enteric CH4 emissions, energy utilization efficiency of lactating Jersey dairy cows. Forty-eight lactating cows were randomly assigned to one of 4 treatments: (1) control diet (CON), (2) CON with 25 g/d XOS (XOS), (3) CON with 15 g/d EXE (EXE), and (4) CON with 25 g/d XOS and 15 g/d EXE (XOS + EXE). The 60-d experimental period consisted of a 14-d adaptation period and a 46-d sampling period. The enteric CO2 and CH4 emissions and O2 consumption were measured using two GreenFeed units, which were further used to determine the energy utilization efficiency of cows. Results Compared with CON, cows fed XOS, EXE or XOS + EXE significantly (P < 0.05) increased milk yield, true protein and fat concentration, and energy-corrected milk yield (ECM)/DM intake, which could be reflected by the significant improvement (P < 0.05) of dietary NDF and ADF digestibility. The results showed that dietary supplementation of XOS, EXE or XOS + EXE significantly (P < 0.05) reduced CH4 emission, CH4/milk yield, and CH4/ECM. Furthermore, cows fed XOS demonstrated highest (P < 0.05) metabolizable energy intake, milk energy output but lowest (P < 0.05) of CH4 energy output and CH4 energy output as a proportion of gross energy intake compared with the remaining treatments. Conclusions Dietary supplementary of XOS, EXE or combination of XOS and EXE contributed to the improvement of lactation performance, nutrient digestibility, and energy utilization efficiency, as well as reduction of enteric CH4 emissions of lactating Jersey cows. This promising mitigation method may need further research to validate its long-term effect and mode of action for dairy cows.

Funder

International Science and Technology Cooperation Programme

Central Public-interest Scientific Institution Basal Research Fund of Chinese Academy of Agricultural Sciences

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3