Rumen microbial-driven metabolite from grazing lambs potentially regulates body fatty acid metabolism by lipid-related genes in liver

Author:

Li Zhen,Zhao Xingang,Jian Luyang,Wang Bing,Luo Hailing

Abstract

AbstractBackgroundLipid metabolism differs significantly between grazing and stall-feeding lambs, affecting the quality of livestock products. As two critical organs of lipid metabolism, the differences between feeding patterns on rumen and liver metabolism remain unclear. In this study, 16S rRNA, metagenomics, transcriptomics, and untargeted metabolomics were utilized to investigate the key rumen microorganisms and metabolites, as well as liver genes and metabolites associated with fatty acid metabolism under indoor feeding (F) and grazing (G).ResultsCompared with grazing, indoor feeding increased ruminal propionate content. Using metagenome sequencing in combination with 16S rRNA amplicon sequencing, the results showed that the abundance of propionate-producingSucciniclasticumand hydrogenating bacteria Tenericutes was enriched in the F group. For rumen metabolism, grazing caused up-regulation of EPA, DHA and oleic acid and down-regulation of decanoic acid, as well as, screening for 2-ketobutyric acid as a vital differential metabolite, which was enriched in the propionate metabolism pathway. In the liver, indoor feeding increased 3-hydroxypropanoate and citric acid content, causing changes in propionate metabolism and citrate cycle, while decreasing the ETA content. Then, the liver transcriptome revealed that 11 lipid-related genes were differentially expressed in the two feeding patterns. Correlation analysis showed that the expression ofCYP4A6,FADS1,FADS2,ALDH6A1andCYP2C23was significantly associated with the propionate metabolism process, suggesting that propionate metabolism may be an important factor mediating the hepatic lipid metabolism. Besides, the unsaturated fatty acids in muscle, rumen and liver also had a close correlation.ConclusionsOverall, our data demonstrated that rumen microbial-driven metabolite from grazing lambs potentially regulates multiple hepatic lipid-related genes, ultimately affecting body fatty acid metabolism.

Funder

Agriculture Research System of China

Key Subject of Ningxia Province

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Biochemistry,Food Science,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3