Alterations in intestinal microbiota composition coincide with impaired intestinal morphology and dysfunctional ileal immune response in growing-finishing pigs under constant chronic heat stress

Author:

Xiong Yunxia,Cao Shuting,Xiao Hao,Wu Qiwen,Yi Hongbo,Jiang Zongyong,Wang LiORCID

Abstract

Abstract Background Previous studies had shown that short-term acute heat stress (HS) affected the host’s metabolism and intestinal microbiota independent of feed intake (FI) reduction, and long-term calorie restriction caused intestinal morphological injuries and gut microbial alterations. However, research on the effects of constant chronic HS on intestinal microbial composition and the roles of FI reduction played in is limited. This study aimed to investigate the effects of 7-day constant chronic HS on the composition of intestinal microbes in growing-finishing pigs, and its relationship with pigs’ performance, intestinal morphology, and ileal immune response. Twenty-four growing-finishing pigs (Duroc × Large White × Landrace, 30 ± 1 kg body weight) were randomly assigned to three treatments (n = 8), 1) thermal neutral (TN) conditions (25 ± 1 °C) with ad libitum FI, 2) HS conditions (35 ± 1 °C) with ad libitum FI, 3) pair-fed (PF) with HS under TN conditions to discriminate the confounding effects of dissimilar FI, and the FI was the previous day’s average FI of HS. The small intestinal segments (duodenum, jejunum, and ileum) and feces were collected on d 8. Results Results indicated that HS drastically declined (P < 0.05) average daily gain (ADG) and average daily feed intake (ADFI) (about 61%) in comparison with TN, and caused hyperpyrexia, meanwhile PF caused hypothermia. Morphological observation by light and electron microscopes showed that both HS and PF treatment decreased (< 0.05) the villus and microvillus height compared with TN. Additionally, HS increased (P < 0.05) protein expression of heat shock protein 70 in the duodenum, jejunum, and ileum. Furthermore, the expression of tight junction protein zonula occluden-1 (ZO-1) in the duodenum and ileum, and Occludin in the ileum were enhanced (P < 0.05) compared with TN and PF. Moreover, HS significantly enhanced (P < 0.05) the mRNA relative expression of inflammatory cytokines (TLR-2, TLR-4, and tumor necrosis factor-α (TNF-α), IL-6, IL-8, PG1–5, β-defensin 2 (pBD-2)), mucins (mucin-1 and mucin-2) and P65 protein level in the ileal mucosa tissue. Intestinal microbiota analysis by 16S rRNA sequencing showed lower (P < 0.10) α diversity in both HS and PF, and a separated cluster of β diversity among groups. Compared with TN, HS but not PF mainly reduced (FDR < 0.05) Bacteroidetes (phylum), Bacteroidia (class) and elevated the proportions of Proteobacteria (phylum, FDR < 0.05), Bacillales (order, FDR < 0.05), Planococcaceae (family, FDR < 0.05), Kurthia (genus, FDR < 0.05), Streptococcaceae (family, FDR < 0.10) and Streptococcus (genus, FDR < 0.10). Notably, Lactobacillales (order) was decreased (FDR < 0.05) by PF alone. Furthermore, the Spearman correlation analysis indicated that the microbes prevalent in HS were positively (P < 0.05) associated with intestinal morphological injuries indicators and ileal immune response parameters, and the microbes reduced in HS were negatively (P < 0.05) with the performance data. Conclusions Intestinal morphological injuries and ileal immune response caused by constant chronic HS independent of FI showed close connections with alterations in intestinal microbiota in growing-finishing pigs.

Funder

national key research and development program of china

the science and technology program of guangdong academy of agricultural sciences

graduate research and innovation projects of jiangsu province

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3