Different dietary starch patterns in low-protein diets: effect on nitrogen efficiency, nutrient metabolism, and intestinal flora in growing pigs

Author:

Zhou Junyan,Wang Lu,Yang Lijie,Yang Guangxin,Zeng Xiangfang,Qiao Shiyan

Abstract

Abstract Background Protein releases amino acids faster than starch releases glucose in digestive tract of pigs fed low-protein (LP) diets. Poor synchronization of dietary glucose and amino acids supply leads to compromised nitrogen efficiency. Dietary starch patterns modulation may improve this situation. Methods Growing barrows (29.7 ± 2.0 kg) were randomly allotted into 5 dietary treatments with LP diets consisting of different purified starches. Treatments included: waxy corn starch (W LP), corn starch + waxy corn starch (C + W LP), corn starch (C LP), pea starch + waxy corn starch (P + W LP) and pea starch (P LP). In the experiment, growth performance, protein deposition, nutrient metabolism, and fecal microbial community of pigs were investigated. In vitro starch digestion was used for predicting the in vivo glucose response. Results Dietary starch in vitro glucose release profile was determined by starch source and the ratio of amylopectin and amylose. C + W LP treatment showed decreased total nitrogen excretion and plasma citrulline concentration and improved plasma leptin concentration among treatments (P < 0.05). Besides, the highest nitrogen apparent biological value, whole-body protein deposition and growth performance and lowest urinary nitrogen excretion were also observed in C + W LP treatment. Compared with the other groups, C + W LP and C LP showed increased plasma pyruvate, IGF-1, and lipase concentrations (P < 0.05). The W LP group presented dramatically increased plasma alanine and urea nitrogen concentration and decreased aldolase and leptin concentrations (P < 0.05). Dietary starch patterns did not make an impact on bacterial richness and diversity, but changed the taxonomic and functional structures of the microbial communities. Microbial protein fermentation product (isobutyrate and isovalerate) presented increased in P LP treatments compared with the other treatments (P < 0.05). Conclusions Dietary starch patterns modulation can regulate dietary glucose release profile, nutrient metabolism, protein turnover, and fecal microbial fermentation in pigs. The optimal dietary glucose release profile effectively strengthened whole-body protein deposition and improve nitrogen efficiency and growth performance in growing pigs fed LP diets.

Funder

Beijing Swine Innovation Team of Modern Agriculture Industry Technological System

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3