Improving the accuracy of genomic prediction for meat quality traits using whole genome sequence data in pigs

Author:

Zhuang Zhanwei,Wu Jie,Qiu Yibin,Ruan Donglin,Ding Rongrong,Xu Cineng,Zhou Shenping,Zhang Yuling,Liu Yiyi,Ma Fucai,Yang Jifei,Sun Ying,Zheng Enqin,Yang Ming,Cai Gengyuan,Yang JieORCID,Wu Zhenfang

Abstract

Abstract Background Pork quality can directly affect customer purchase tendency and meat quality traits have become valuable in modern pork production. However, genetic improvement has been slow due to high phenotyping costs. In this study, whole genome sequence (WGS) data was used to evaluate the prediction accuracy of genomic best linear unbiased prediction (GBLUP) for meat quality in large-scale crossbred commercial pigs. Results We produced WGS data (18,695,907 SNPs and 2,106,902 INDELs exceed quality control) from 1,469 sequenced Duroc × (Landrace × Yorkshire) pigs and developed a reference panel for meat quality including meat color score, marbling score, L* (lightness), a* (redness), and b* (yellowness) of genomic prediction. The prediction accuracy was defined as the Pearson correlation coefficient between adjusted phenotypes and genomic estimated breeding values in the validation population. Using different marker density panels derived from WGS data, accuracy differed substantially among meat quality traits, varied from 0.08 to 0.47. Results showed that MultiBLUP outperform GBLUP and yielded accuracy increases ranging from 17.39% to 75%. We optimized the marker density and found medium- and high-density marker panels are beneficial for the estimation of heritability for meat quality. Moreover, we conducted genotype imputation from 50K chip to WGS level in the same population and found average concordance rate to exceed 95% and r2 = 0.81. Conclusions Overall, estimation of heritability for meat quality traits can benefit from the use of WGS data. This study showed the superiority of using WGS data to genetically improve pork quality in genomic prediction.

Funder

Technical Innovation of Crossbred in Swine and Breed High Fertility Lines Project

Local Innovative and Research Teams Project of Guangdong Province

Natural Science Foundation of Guangdong Province project

Innovative Teams of Modern Agriculture and Industry Technology System of Guangdong Province

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Biochemistry,Food Science,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3