The effect of ensiled paulownia leaves in a high-forage diet on ruminal fermentation, methane production, fatty acid composition, and milk production performance of dairy cows

Author:

Huang Haihao,Lechniak Dorota,Szumacher-Strabel Malgorzata,Patra Amlan Kumar,Kozłowska Martyna,Kolodziejski Pawel,Gao Min,Ślusarczyk Sylwester,Petrič Daniel,Cieslak Adam

Abstract

Abstract Background The use of industrial by-products rich in bioactive compounds as animal feeds can reduce greenhouse gas production. Paulownia leaves silage (PLS) was supplemented to dairy cows' diet and evaluated in vitro (Exp. 1; Rusitec) and in vivo (Exp. 2, cannulated lactating dairy cows and Exp. 3, non-cannulated lactating dairy cows). The study investigated the PLS effect on ruminal fermentation, microbial populations, methane production and concentration, dry matter intake (DMI), and fatty acid (FA) proportions in ruminal fluid and milk. Results Several variables of the ruminal fluid were changed in response to the inclusion of PLS. In Exp. 1, the pH increased linearly and quadratically, whereas ammonia and total volatile fatty acid (VFA) concentrations increased linearly and cubically. A linear, quadratic, and cubical decrease in methane concentration was observed with increasing dose of the PLS. Exp. 2 revealed an increase in ruminal pH and ammonia concentrations, but no changes in total VFA concentration. Inclusion of PLS increased ruminal propionate (at 3 h and 6 h after feeding), isovalerate, and valerate concentrations. Addition of PLS also affected several populations of the analyzed microorganisms. The abundances of protozoa and bacteria were increased, whereas the abundance of archaea were decreased by PLS. Methane production decreased by 11% and 14% in PLS-fed cows compared to the control in Exp. 2 and 3, respectively. Exp. 3 revealed a reduction in the milk protein and lactose yield in the PLS-fed cows, but no effect on DMI and energy corrected milk yield. Also, the PLS diet affected the ruminal biohydrogenation process with an increased proportions of C18:3 cis-9 cis-12 cis-15, conjugated linoleic acid, C18:1 trans-11 FA, polyunsaturated fatty acids (PUFA), and reduced n6/n3 ratio and saturated fatty acids (SFA) proportion in milk. The relative transcript abundances of the 5 of 6 analyzed genes regulating FA metabolism increased. Conclusions The dietary PLS replacing the alfalfa silage at 60 g/kg diet can reduce the methane emission and improve milk quality with greater proportions of PUFA, including conjugated linoleic acid, and C18:1 trans-11 along with reduction of SFA. Graphical Abstract Graphical abstract of the experimental roadmap

Funder

Narodowe Centrum Nauki

Ministerstwo Edukacji i Nauki

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3