Abstract
Abstract
Background
Diagnosis of Parkinson’s disease (PD) is informed by the presence of progressive motor and non-motor symptoms and by imaging dopamine transporter with [123I]ioflupane (DaTscan). Deep learning and ensemble methods have recently shown promise in medical image analysis. Therefore, this study aimed to develop a three-stage, deep learning, ensemble approach for prognosis in patients with PD.
Methods
Retrospective data of 198 patients with PD were retrieved from the Parkinson’s Progression Markers Initiative database and randomly partitioned into the training, validation, and test sets with 118, 40, and 40 patients, respectively. The first and second stages of the approach extracted features from DaTscan and clinical measures of motor symptoms, respectively. The third stage trained an ensemble of deep neural networks on different subsets of the extracted features to predict patient outcome 4 years after initial baseline screening. The approach was evaluated by assessing mean absolute percentage error (MAPE), mean absolute error (MAE), Pearson’s correlation coefficient, and bias between the predicted and observed motor outcome scores. The approach was compared to individual networks given different data subsets as inputs.
Results
The ensemble approach yielded a MAPE of 18.36%, MAE of 4.70, a Pearson’s correlation coefficient of 0.84, and had no significant bias indicating accurate outcome prediction. The approach outperformed individual networks not given DaTscan imaging or clinical measures of motor symptoms as inputs, respectively.
Conclusion
The approach showed promise for longitudinal prognostication in PD and demonstrated the synergy of imaging and non-imaging information for the prediction task.
Funder
National Institutes of Health
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Reference40 articles.
1. Armstrong MJ, Okun MS. Diagnosis and treatment of Parkinson disease: a review. JAMA. 2020;323:548–60.
2. Ball N, Teo W-P, Chandra S, Chapman J. Parkinson’s disease and the environment. Front Neurol. 2019;10:218.
3. DeMaagd G, Philip A. Parkinson’s disease and its management: part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. Pharm Ther. 2015;40:504.
4. Pringsheim T, Jette N, Frolkis A, Steeves TDL. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord. 2014;29:1583–90.
5. Rahmim A, Huang P, Shenkov N, Fotouhi S, Davoodi-Bojd E, Lu L, et al. Improved prediction of outcome in Parkinson’s disease using radiomics analysis of longitudinal DAT SPECT images. NeuroImage Clin. 2017;16:539–44.
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献