Abstract
Abstract
Purpose
TEM-1 (tumor endothelial marker-1) is a single-pass transmembrane cell surface glycoprotein expressed at high levels by tumor vasculature and malignant cells. We aimed to perform a preclinical investigation of a novel anti-TEM-1 scFv-Fc fusion antibody, 1C1m-Fc, which was radiolabeled with 177Lu for use in soft tissue sarcomas models.
Methods
1C1m-Fc was first conjugated to p-SCN-Bn-DOTA using different excess molar ratios and labeled with 177Lu. To determine radiolabeled antibody immunoreactivity, Lindmo assays were performed.
The in vivo behavior of [177Lu]Lu-1C1m-Fc was characterized in mice bearing TEM-1 positive (SK-N-AS) and negative (HT-1080) tumors by biodistribution and single-photon emission SPECT/CT imaging studies. Estimated organ absorbed doses were obtained based on biodistribution results.
Results
The DOTA conjugation and the labeling with 177Lu were successful with a radiochemical purity of up to 95%. Immunoreactivity after radiolabeling was 86% ± 4%. Biodistribution showed a specific uptake in TEM-1 positive tumor versus liver as critical non-specific healthy organ, and this specificity is correlated to the number of chelates per antibody. A 1.9-fold higher signal at 72 h was observed in SPECT/CT imaging in TEM-1 positive tumors versus control tumors.
Conclusion
TEM-1 is a promising target that could allow a theranostic approach to soft-tissue sarcoma, and 1C1m-Fc appears to be a suitable targeting candidate. In this study, we observed the influence of the ratio DOTA/antibody on the biodistribution. The next step will be to investigate the best conjugation to achieve an optimal tumor-to-organ radioactivity ratio and to perform therapy in murine xenograft models as a prelude to future translation in patients.
Funder
Alfred and Annemarie von Sick Grant
Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland
Publisher
Springer Science and Business Media LLC
Subject
Radiology Nuclear Medicine and imaging
Reference40 articles.
1. Elashoff MR, Wingrove JA, Beineke P, Daniels SE, Tingley WG, Rosenberg S, et al. Development of a blood-based gene expression algorithm for assessment of obstructive coronary artery disease in non-diabetic patients. BMC Med Genet. 2011;4:26.
2. Teicher BA. CD248: A therapeutic target in cancer and fibrotic diseases. Oncotarget. 2019;10(9):993–1009.
3. Christian S, Ahorn H, Novatchkova M, Garin-Chesa P, Park JE, Weber G, et al. Molecular cloning and characterization of EndoGlyx-1, an EMILIN-like multisubunit glycoprotein of vascular endothelium. J Biol Chem. 2001;276(51):48588–95.
4. Lax S, Hou TZ, Jenkinson E, Salmon M, MacFadyen JR, Isacke CM, et al. CD248/endosialin is dynamically expressed on a subset of stromal cells during lymphoid tissue development, splenic remodeling and repair. FEBS Lett. 2007;581(18):3550–6.
5. MacFadyen JR, Haworth O, Roberston D, Hardie D, Webster MT, Morris HR, et al. Endosialin (TEM1, CD248) is a marker of stromal fibroblasts and is not selectively expressed on tumour endothelium. FEBS Lett. 2005;579(12):2569–75.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献