Imaging quality of an artificial intelligence denoising algorithm: validation in 68Ga PSMA-11 PET for patients with biochemical recurrence of prostate cancer

Author:

Margail CharlesORCID,Merlin Charles,Billoux Tommy,Wallaert Maxence,Otman Hosameldin,Sas Nicolas,Molnar Ioana,Guillemin Florent,Boyer Louis,Guy Laurent,Tempier Marion,Levesque Sophie,Revy Alban,Cachin Florent,Chanchou Marion

Abstract

Abstract Background 68 Ga-PSMA PET is the leading prostate cancer imaging technique, but the image quality remains noisy and could be further improved using an artificial intelligence-based denoising algorithm. To address this issue, we analyzed the overall quality of reprocessed images compared to standard reconstructions. We also analyzed the diagnostic performances of the different sequences and the impact of the algorithm on lesion intensity and background measures. Methods We retrospectively included 30 patients with biochemical recurrence of prostate cancer who had undergone 68 Ga-PSMA-11 PET-CT. We simulated images produced using only a quarter, half, three-quarters, or all of the acquired data material reprocessed using the SubtlePET® denoising algorithm. Three physicians with different levels of experience blindly analyzed every sequence and then used a 5-level Likert scale to assess the series. The binary criterion of lesion detectability was compared between series. We also compared lesion SUV, background uptake, and diagnostic performances of the series (sensitivity, specificity, accuracy). Results VPFX-derived series were classified differently but better than standard reconstructions (p < 0.001) using half the data. Q.Clear series were not classified differently using half the signal. Some series were noisy but had no significant effect on lesion detectability (p > 0.05). The SubtlePET® algorithm significantly decreased lesion SUV (p < 0.005) and increased liver background (p < 0.005) and had no substantial effect on the diagnostic performance of each reader. Conclusion We show that the SubtlePET® can be used for 68 Ga-PSMA scans using half the signal with similar image quality to Q.Clear series and superior quality to VPFX series. However, it significantly modifies quantitative measurements and should not be used for comparative examinations if standard algorithm is applied during follow-up.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep learning-based PET image denoising and reconstruction: a review;Radiological Physics and Technology;2024-02-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3