Abstract
Abstract
Background
To determine whether artificial intelligence (AI) processed PET/CT images of reduced by one-third of 18-F-FDG activity compared to the standard injected dose, were non-inferior to native scans and if so to assess the potential impact of commercialization.
Materials and methods
SubtlePET™ AI was introduced in a PET/CT center in Italy. Eligible patients referred for 18F-FDG PET/CT were prospectively enrolled. Administered 18F-FDG was reduced to two-thirds of standard dose. Patients underwent one low-dose CT and two sequential PET scans; “PET-processed” with reduced dose and standard acquisition time, and “PET-native” with an elapsed time to simulate standard acquisition time and dose. PET-processed images were reconstructed using SubtlePET™. PET-native images were defined as the standard of reference. The datasets were anonymized and independently evaluated in random order by four blinded readers. The evaluation included subjective image quality (IQ) assessment, lesion detectability, and assessment of business benefits.
Results
From February to April 2020, 61 patients were prospectively enrolled. Subjective IQ was not significantly different between datasets (4.62±0.23, p=0.237) for all scanner models, with “almost perfect” inter-reader agreement. There was no significant difference between datasets in lesions’ detectability, target lesion mean SUVmax value, and liver mean SUVmean value (182.75/181.75 [SD:0.71], 9.8/11.4 [SD:1.13], 2.1/1.9 [SD:0.14] respectively). No false-positive lesions were reported in PET-processed examinations. Agreed SubtlePET™ price per examination was 15-20% of FDG savings.
Conclusion
This is the first real-world study to demonstrate the non-inferiority of AI processed 18F-FDG PET/CT examinations obtained with 66% standard dose and a methodology to define the AI solution price.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Radiation
Reference16 articles.
1. Kumar R, Halanaik D, Malhotra A. Clinical applications of positron emission tomography-computed tomography in oncology. Indian J Cancer. 2010;47:100–19.
2. Healthcare resource statistics - technical resources and medical technology. 2020; Available from: https://ec.europa.eu/eurostat/statistics-explained/index.php/Healthcare_resource_statistics_-_technical_resources_and_medical_technology#Use_of_medical_technology.
3. Nievelstein RAJ, van Ufford HMEQ, Kwee TC, Bierings MB, Ludwig I, Beek FJA, et al. Radiation exposure and mortality risk from CT and PET imaging of patients with malignant lymphoma. Eur Radiol. 2012;22:1946–54.
4. COUNCIL DIRECTIVE 2013/59/EURATOM of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Official Journal of the European Union [Internet]. 2014;1–73. Available from: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2014:013:0001:0073:EN:PDF.
5. Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol I. 2014;42:328–54.
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献