Abstract
Abstract
Purpose
Knowing the precise flow of cerebrospinal fluid (CSF) is important in the management of multiple neurological diseases. Technology for non-invasively quantifying CSF flow would allow for precise localization of injury and assist in evaluating the viability of certain devices placed in the central nervous system (CNS).
Methods
We describe a near-infrared fluorescent dye for accurately monitoring CSF flow by positron emission tomography (PET) and fluorescence. IR-783, a commercially available near-infrared dye, was chemically modified and radiolabeled with fluorine-18 to give [18F]-IR783-AMBF3. [18F]-IR783-AMBF3 was intrathecally injected into the rat models with normal and aberrant CSF flow and evaluated by the fluorescence and PET/MRI or PET/CT imaging modes.
Results
IR783-AMBF3 was clearly distributed in CSF-containing volumes by PET and fluorescence. We compared IR783-AMBF3 (fluorescent at 778/793 nm, ex/em) to a shorter-wavelength, fluorescein equivalent (fluorescent at 495/511 nm, ex/em). IR783-AMBF3 was superior for its ability to image through blood (hemorrhage) and for imaging CSF-flow, through-skin, in subdural-run lumboperitoneal shunts. IR783-AMBF3 was safe under the tested dosage both in vitro and in vivo.
Conclusion
The superior imaging properties of IR783-AMBF3 could lead to enhanced accuracy in the treatment of patients and would assist surgeons in non-invasively diagnosing diseases of the CNS.
Funder
National Institute of Biomedical Imaging and Bioengineering K99/R00
NIH/NCI Cancer Center Support Grant P30
US Department of Defense Congressionally Directed Research Projects Special Emphasis Grant on Pediatric Brain Tumors
National Institute of Health RC2
Publisher
Springer Science and Business Media LLC
Subject
Radiology Nuclear Medicine and imaging
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献