Abstract
Abstract
Purpose
The angiotensin converting enzyme-2 (ACE2)—entry receptor of SARS-CoV-2—and its homologue, the angiotensin-converting enzyme (ACE), play a pivotal role in maintaining cardiovascular homeostasis. Potential changes in ACE2 expression levels and dynamics after SARS-CoV-2 infection have been barely investigated. The aim of this study was to develop an ACE2-targeting imaging agent as a noninvasive imaging tool to determine ACE2 regulation.
Methods
DOTA-DX600, NODAGA-DX600 and HBED-CC-DX600 were obtained through custom synthesis and labeled with gallium-67 (T1/2 = 3.26 d) as a surrogate radioisotope for gallium-68 (T1/2 = 68 min). ACE2- and ACE-transfected HEK cells were used for the in vitro evaluation of these radiopeptides. The in vivo tissue distribution profiles of the radiopeptides were assessed in HEK-ACE2 and HEK-ACE xenografted mice and imaging studies were performed using SPECT/CT.
Results
The highest molar activity was obtained for [67Ga]Ga-HBED-CC-DX600 (60 MBq/nmol), whereas the labeling efficiency of the other peptides was considerably lower (20 MBq/nmol). The radiopeptides were stable over 24 h in saline (> 99% intact peptide). All radiopeptides showed uptake in HEK-ACE2 cells (36–43%) with moderate ACE2-binding affinity (KD value: 83–113 nM), but no uptake in HEK-ACE cells (< 0.1%) was observed. Accumulation of the radiopeptides was observed in HEK-ACE2 xenografts (11–16% IA/g) at 3 h after injection, but only background signals were seen in HEK-ACE xenografts (< 0.5% IA/g). Renal retention was still high 3 h after injection of [67Ga]Ga-DOTA-DX600 and [67Ga]Ga-NODAGA-DX600 (~ 24% IA/g), but much lower for [67Ga]Ga-HBED-CC-DX600 (7.2 ± 2.2% IA/g). SPECT/CT imaging studies confirmed the most favorable target-to-nontarget ratio for [67Ga]Ga-HBED-CC-DX600.
Conclusions
This study demonstrated ACE2 selectivity for all radiopeptides. [67Ga]Ga-HBED-CC-DX600 was revealed as the most promising candidate due to its favorable tissue distribution profile. Importantly, the HBED-CC chelator enabled 67Ga-labeling at high molar activity, which would be essential to obtain images with high signal-to-background contrast to detect (patho)physiological ACE2 expression levels in patients.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献