Increasing high school teachers self-efficacy for integrated STEM instruction through a collaborative community of practice

Author:

Kelley Todd R.,Knowles J. Geoffery,Holland Jeffrey D.,Han Jung

Abstract

Abstract Background Teachers can have a significant impact on student interest and learning in science, technology, engineering, and math (STEM) subjects and careers. Teacher self-efficacy can also significantly affect student learning. Researchers investigated the effects of teacher professional development and integrated STEM curriculum development on teacher self-efficacy. Participants in the study included high school science and engineering technology teachers enrolled in a National Science Foundation–ITEST project called Teachers and Researchers Advancing Integrated Lessons in STEM (TRAILS). The TRAILS program sought to prepare teachers to integrate STEM content using engineering design, biomimicry, science inquiry, and 3D printing as pedagogical approaches. Teachers learned within a community of practice working alongside industry partners and college faculty. The purpose of the study was to investigate the impact of the 70 h of professional development to train three cohorts of teachers over 3 years on teacher self-efficacy. The research design utilized a quasi-experimental nonequivalent control group approach, including an experimental group and an untreated control group. Results Measurements on beliefs about teacher self-efficacy were collected on pretest, posttest, and delayed posttest survey assessments. Researchers analyzed the T-STEM survey results for teaching self-efficacy using the Wilcoxson signed-rank test for detecting significant differences. Science teachers showed a significant increase in teacher self-efficacy comparing the pretest and delayed posttest scores after TRAILS professional development and STEM lesson implementation (p = .001, effect size = .95). Additionally, significant differences between groups (science experimental vs science control group teachers) using the Wilcoxon rank-sum test were detected from pretest to posttest (p = .033, effect size = .46), posttest to delayed posttest (p = .029, effect size = .47), and pretest to delayed posttest (p = .005, effect size = .64). There were no significant differences detected in the control group. Engineering technology teachers showed no significant differences between the pretest, posttest, and delayed posttest self-efficacy scores. Conclusions The results indicate the science teachers’ self-efficacy increased after professional development and after lesson implementation. Potential implications from this research suggest that the science teacher participants benefited greatly from learning within a community of practice, engaging in science practices, and using science knowledge to solve a real-world problem (engineering design).

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Education

Reference69 articles.

1. Annetta, L., & Minogue, J. (2016). Connecting science and engineering education practices in meaningful ways building bridges (1st ed. 2016. ed., Contemporary Trends and Issues in Science Education, 44).

2. Ary, D., Jacobs, L., Sorensen, C., & Walker, D. (2014). Introduction to research in education (9th ed.). Belmont: Wadsworth.

3. Autenrieth, R., Lewis, C., & Butler-Perry, K. (2017). Long-term impact of the enrichment experiences in engineering (E3) summer teacher program. Journal of STEM Education, 18(1), 25–31.

4. Bandura, A. (1994). Self-efficacy. In V. S. Ramachaudran (Ed.), Encyclopedia of human behavior (Vol. 4) (pp. 71–81). New York: Academic Press.

5. Bandura, A. (1997). Self-efficacy: the exercise of control. New York: W H Freeman/Times Books/ Henry Holt & Co..

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3