Strategies and difficulties during students’ construction of data visualizations

Author:

Chang Hsin-YiORCID,Chang Yen-Jung,Tsai Meng-JungORCID

Abstract

Abstract Background Data visualizations transform data into visual representations such as graphs, diagrams, charts and so forth, and enable inquiries and decision-making in many professional fields, as well as in public and economic areas. How students’ data visualization literacy (DVL), including constructing, comprehending, and utilizing adequate data visualizations, can be developed is gaining increasing attention in STEM education. As fundamental steps, the purpose of this study was to understand common student difficulties and useful strategies during the process of constructing data visualization so that suggestions and principles can be made for the design of curricula and interventions to develop students’ DVL. Methods This study engaged 57 college and high school students in constructing data visualizations relating to the topic of air quality for a decision-making task. The students’ difficulties and strategies demonstrated during the process of data visualization were analyzed using multiple collected data sources including the students’ think-aloud transcripts, retrospective interview transcripts, and process videos that captured their actions with the data visualization tool. Qualitative coding was conducted to identify the students’ difficulties and strategies. Epistemic network analysis (ENA) was employed to generate network models revealing how the difficulties and strategies co-occurred, and how the college and high school students differed. Results Six types of student difficulties and seven types of strategies were identified. The strategies were further categorized into non-, basic- and high-level metavisual strategies. About three-quarters of the participants employed basic or high-level metavisual strategies to overcome the technological and content difficulties. The high school students demonstrated a greater need to develop content knowledge and representation skills, whereas the college students needed more support to know how to simplify data to construct the best data visualizations. Conclusions and implications The study specified metacognition needed for data visualization, which builds on and extends the cognitive model of drawing construction (CMDC) and theoretical perspectives of metavisualization. The results have implications for developing students’ data visualization literacy in STEM education by considering the difficulties and trajectories of metacognitive strategy development, and by addressing the different patterns and needs demonstrated by the college and high school students.

Funder

National Science and Technology Council

Ministry of Education

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Let’s play! Transforming STEM education with board games;Eurasia Journal of Mathematics, Science and Technology Education;2024-08-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3