Abstract
Abstract
Background
Increasingly, high dropout rates in science courses at colleges and universities have led to discussions of causes and potential support measures of students. Students’ prior knowledge is repeatedly mentioned as the best predictor of academic achievement. Theory describes four hierarchically ordered types of prior knowledge, from declarative knowledge of facts to procedural application of knowledge. This study explores the relevance of these four prior knowledge types to academic achievement in the introductory phase of the two science subjects, biology and physics.
Results
We assessed the knowledge types at the beginning and student achievement (measured by course completion) at the end of the first study year. We applied logistic regression models to evaluate the relationship between the knowledge types and academic achievement. First, we controlled for a well-established predictor of academic achievement (high school grade point average). Second, we added the knowledge types as predictors. For biology, we found that only knowledge about principles and concepts was a significant predictor in the first year. For physics, knowledge about concepts and principles as well as the ability to apply knowledge to problems was related to academic achievement.
Conclusion
Our results concerning the knowledge types, which are of special relevance in biology and physics studies, could lead to effective measures, e.g. for identifying at-risk students and course guidance. Furthermore, the results provide a profound starting point for controlled intervention studies that systematically foster the identified relevant knowledge types in each subject and aim at a theory- and empirical-based optimization of pre- and introductory courses.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Reference86 articles.
1. Adams, R. J. (2005). Reliability as a measurement design effect. Studies in Educational Evaluation, 31, 162–172.
2. Adelman, C. (1999). Answers in the tool box: Academic Intensity, Attendance Patterns, and Bachelor’s Degree Attainment. DC. ED Pubs: Washington.
3. Alters, B. J. (1995). Counseling physics students: A research basis. The Physics Teacher, 33, 413–415.
4. Alting, A., & Walser, A. D. (2007). Retention and persistence of undergraduate engineering students: What happens after the first year? Proceedings of the American Society for Engineering Education Annual Conference and Exposition. Hawaii: Honolulu
https://peer.asee.org/2344
.
5. Alzen, J. L., Langdon, L. S., & Otero, V. K. (2018). A logistic regression investigation of the relationship between the Learning Assistant model and failure rates in introductory STEM courses. International journal of STEM education, 5(1), 56.
https://doi.org/10.1186/s40594-018-0152-1
.
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献