Integrating science and engineering practices: outcomes from a collaborative professional development

Author:

Brand Brenda R.

Abstract

Abstract Background The Next Generation Science Standards accentuate engineering design along with scientific inquiry, emphasizing the relationship between scientific investigations and engineering design in solving problems and devising new ideas and technologies. The goal is for students to realize the importance of science and engineering in innovation and in solving many of today’s challenges. The Next Generation Science Standards contends that a working knowledge and practicality of engineering design prepares students for embracing the challenges of the future. To support students in developing these capabilities, teachers are tasked with the responsibility of facilitating science instruction that integrates science and engineering practices. This is a challenge since a majority of them have little to no understanding of engineering applications. Results An interdisciplinary team, consisting of science education and mechanical engineering faculty and doctoral students from each discipline, and science, mathematics, and career and technical curriculum supervisors, collaborated with middle school science, mathematics, and career and technical education teachers to develop a framework for integrating engineering practices into their curricula. The exploratory nature of the project, and instructional outcomes with their students, supported teachers in developing an understanding and value for science and engineering practices. As a result, they were motivated to critique and revise their practices, aiming to develop and implement instruction that they perceived as beneficial to their students. Conclusion With the surge in emphasis on preparing K-12 students for the STEM workforce, initiatives devoted to exposing teachers and students to STEM applications have also increased. The findings from this study could be useful for informing these initiatives, since they reveal the learning experiences of the teachers while processing instructional strategies for integrating science and engineering practices into their curriculum. The findings highlight factors that motivated these teachers to reform their instructional practices, as well as their deliberations while endeavoring to assimilate the strategies into their curricular activities.

Publisher

Springer Science and Business Media LLC

Subject

Education

Reference36 articles.

1. Anderson-Rowland, M. R., Baker, D.R.., Banks, D.L., Crouch, P.E., Evans, D.L., Garcia, A., &Yasar, S. (2003). Design, engineering, and technological expansion for K-12 teachers. In 2003 ASEE Annual Conference and Exposition: Staying in Tune with Engineering Education. pp. 7211-7227.

2. Antink-Meyer, A. ( 1 ), & Meyer, D. Z. (2016). Science teachers’ misconceptions in science and engineering distinctions: reflections on modern research examples. Journal of Science Teacher Education, 27(6), 625–647. https://doi.org/10.1007/s10972-016-9478-z

3. Bodzin, A. M., & Beerer, K. M. (2003). Promoting inquiry-based science instruction: the validation of the Science Teacher Inquiry Rubric (STIR). Journal of Elementary Science Education, 15(2), 39–49. https://doi.org/10.1007/BF03273842.

4. Brand, B., Kasarda, M., & Williams, C. (2017). Inquiry By Engineering Design: applying the sixth E. Technology and Engineering Teacher., 77(2), 22–26.

5. Brand, B., & Moore, S. (2010). Enhancing teachers’ application of inquiry-based strategies using a constructivist sociocultural professional development model. International Journal of Science Education, 33(7),887-913.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3