The dynamics of plasma biomarkers across the Alzheimer’s continuum

Author:

Guo Yu,Shen Xue-Ning,Wang Hui-Fu,Chen Shi-Dong,Zhang Ya-Ru,Chen Shu-Fen,Cui Mei,Cheng Wei,Dong Qiang,Ma Tao,Yu Jin-Tai

Abstract

Abstract Background Failures in drug trials strengthen the necessity to further determine the neuropathological events during the development of Alzheimer’s disease (AD). We sought to investigate the dynamic changes and performance of plasma biomarkers across the entire Alzheimer’s continuum in the Chinese population. Methods Plasma amyloid-β (Αβ)42, Aβ40, Aβ42/Aβ40, phosphorylated tau (p-tau)181, neurofilament light (NfL), and glial fibrillary acidic protein (GFAP) were measured utilizing the ultrasensitive single-molecule array technology across the AD continuum (n=206), wherein Aβ status was defined by the values of cerebrospinal fluid (CSF) Aβ42 or Aβ positron emission tomography (PET). Their trajectories were compared with those of putative CSF biomarkers. Results Plasma GFAP and p-tau181 increased only in Aβ-positive individuals throughout aging, whereas NfL increased with aging regardless of Aβ status. Among the plasma biomarkers studied, GFAP was the one that changed first. It had a prominent elevation early in the cognitively unimpaired (CU) A+T− phase (CU A+T− phase: 97.10±41.29 pg/ml; CU A−T− phase: 49.18±14.39 pg/ml; p<0.001). From preclinical to symptomatic stages of AD, plasma GFAP started to rise sharply as soon as CSF Aβ became abnormal and continued to increase until reaching its highest level during the AD dementia phase. The greatest slope of change was seen in plasma GFAP. This is followed by CSF p-tau181 and total-tau, and, to a lesser extent, then plasma p-tau181. In contrast, the changes in plasma NfL, Aβ42/Aβ40, Aβ42, and Aβ40 were less pronounced. Of note, these plasma biomarkers exhibited smaller dynamic ranges than their CSF counterparts, except for GFAP which was the opposite. Plasma GFAP and p-tau181 were tightly associated with AD pathologies and amyloid tracer uptake in widespread brain areas. Plasma GFAP could accurately identify CSF Aβ42 (area under the curve (AUC)=0.911) and Aβ PET (AUC=0.971) positivity. Plasma p-tau181 also performed well in discriminating Aβ PET status (AUC=0.916), whereas the discriminative accuracy was relatively low for other plasma biomarkers. Conclusions This study is the first to delineate the trajectories of plasma biomarkers throughout the Alzheimer’s continuum in the Chinese population, providing important implications for future trials targeting plasma GFAP to facilitate AD prevention and treatment.

Funder

Shanghai Rising-Star Program

National Natural Science Foundation of China

Science and Technology Innovation 2030 Major Projects

Shanghai Municipal Science and Technology Major Project

Research Start-up Fund of Huashan Hospital

Excellence 2025 Talent Cultivation Program at Fudan University

Shanghai Talent Development Funding for The Project

ZHANGJIANG LAB, Tianqiao and Chrissy Chen Institute, the State Key Laboratory of Neurobiology and Frontiers Center for Brain Science of Ministry of Education, Fudan University

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3