Astrocyte reactivity is associated with tau tangle load and cortical thinning in Alzheimer’s disease

Author:

Guo TengfeiORCID,Li Anqi,Sun Pan,He Zhengbo,Cai Yue,Lan Guoyu,Liu Lin,Li Jieyin,Yang Jie,Zhu Yalin,Zhao Ruiyue,Chen Xuhui,Shi Dai,Liu Zhen,Wang Qingyong,Xu Linsen,Zhou Liemin,Ran Pengcheng,Wang Xinlu,Sun Kun,Lu Jie,Han Ying

Abstract

Abstract Background It is not fully established whether plasma β-amyloid(Aβ)42/Aβ40 and phosphorylated Tau181 (p-Tau181) can effectively detect Alzheimer’s disease (AD) pathophysiology in older Chinese adults and how these biomarkers correlate with astrocyte reactivity, Aβ plaque deposition, tau tangle aggregation, and neurodegeneration. Methods We recruited 470 older adults and analyzed plasma Aβ42/Aβ40, p-Tau181, glial fibrillary acidic protein (GFAP), and neurofilament light (NfL) using the Simoa platform. Among them, 301, 195, and 70 underwent magnetic resonance imaging, Aβ and tau positron emission tomography imaging. The plasma Aβ42/Aβ40 and p-Tau181 thresholds were defined as ≤0.0609 and ≥2.418 based on the receiver operating characteristic curve analysis using the Youden index by comparing Aβ-PET negative cognitively unimpaired individuals and Aβ-PET positive cognitively impaired patients. To evaluate the feasibility of using plasma Aβ42/Aβ40 (A) and p-Tau181 (T) to detect AD and understand how astrocyte reactivity affects this process, we compared plasma GFAP, Aβ plaque, tau tangle, plasma NfL, hippocampal volume, and temporal-metaROI cortical thickness between different plasma A/T profiles and explored their relations with each other using general linear models, including age, sex, APOE-ε4, and diagnosis as covariates. Results Plasma A+/T + individuals showed the highest levels of astrocyte reactivity, Aβ plaque, tau tangle, and axonal degeneration, and the lowest hippocampal volume and temporal-metaROI cortical thickness. Lower plasma Aβ42/Aβ40 and higher plasma p-Tau181 were independently and synergistically correlated with higher plasma GFAP and Aβ plaque. Elevated plasma p-Tau181 and GFAP concentrations were directly and interactively associated with more tau tangle formation. Regarding neurodegeneration, higher plasma p-Tau181 and GFAP concentrations strongly correlated with more axonal degeneration, as measured by plasma NfL, and lower plasma Aβ42/Aβ40 and higher plasma p-Tau181 were related to greater hippocampal atrophy. Higher plasma GFAP levels were associated with thinner cortical thickness and significantly interacted with lower plasma Aβ42/Aβ40 and higher plasma p-Tau181 in predicting more temporal-metaROI cortical thinning. Voxel-wise imaging analysis confirmed these findings. Discussion This study provides a valuable reference for using plasma biomarkers to detect AD in the Chinese community population and offers novel insights into how astrocyte reactivity contributes to AD progression, highlighting the importance of targeting reactive astrogliosis to prevent AD.

Funder

Science Fund for Distinguished Young Scholars of Guangdong Province

Shenzhen Science and Technology Innovation Program

National Natural Science Foundation of China

Shenzhen Bay Laboratory

Chinesisch-Deutsche Zentrum für Wissenschaftsförderung

Lingang Laboratory

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3