Abstract
AbstractThis paper proposes a stiff and safe task-space position and attitude control scheme for robotic manipulators. This study extends the work of Kikuuwe et al’s. (2006) velocity-bounding proxy-based sliding mode control by explicitly addressing the attitude part. The proposed controller has a Jacobian-based structure, which realizes smooth trajectories when the desired attitude is far rotated from the actual attitude. It also imposes arbitrary magnitude limits on the end-effector velocity, angular velocity, and each actuator force without sacrificing a stiffness, which is the same level as a high-gain PID position control below the limits. The benefit of the proposed controller becomes apparent after the robot yields to external forces due to force saturations, when the robot makes contact with obstacles. In such a situation, if the external forces disappear, the controller generates overdamped resuming motion from large tracking errors. The proposed controller can be expected to enhance the safety of robotic applications for the human–robot interaction. The proposed method is validated by experiments employing a six-degree of freedom industrial manipulator.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Control and Optimization,Mechanical Engineering,Instrumentation,Modeling and Simulation
Reference29 articles.
1. Siciliano B, Sciavicco L, Villani L, Oriolo G (2010) Robotics: modelling, planning and control. Springer, Berlin
2. Buss SR (2004) Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods. IEEE J Robot Autom 17(1–19):16
3. Arimoto S, Miyazaki F (1984) Stability and robustness of pid feedback control for robot manipulators of sensory capability. In: Robotics research, first international symposium. MIT Press, pp. 783–799
4. Chiaverini S, Siciliano B, Villani L (1999) A survey of robot interaction control schemes with experimental comparison. IEEE/ASME Trans Mechatron 4(3):273–285
5. Caccavale F, Natale C, Siciliano B, Villani L (2005) Integration for the next generation: embedding force control into industrial robots. IEEE Robot Autom Mag 12(3):53–64
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献