Attitude control of an inverted-pendulum-type robotic wheelchair to climb stairs considering dynamic equilibrium

Author:

Onozuka YuyaORCID,Tomokuni Nobuyasu,Murata Genki,Shino Motoki

Abstract

AbstractThe wheelchair is the major means of transport for elderly and physically disabled people in their daily lives. However it cannot overcome architectural barriers such as curbs and stairs. In this study, we developed an inverted-pendulum-type robotic wheelchair for climbing stairs. This wheelchair has a seat slider and two rotary links between the front and rear wheels on each side. When climbing stairs, the wheelchair rotates the rotary links while maintaining an inverted state of a mobile body by controlling the position of the center of gravity using a seat slider. In previous research, we confirmed that the wheelchair can climb by applying the control method consisting of a center-of-gravity control phase and rotary link control phase. However, it took approximately 15 s to rotate the rotary links during climbing because faster climbing causes the movement of wheels and the wheelchair to fall. This paper focuses on a control method to restrain the movement of the wheels when the stair climbing speed is increased. We realized that the movement was caused by forces acting on the pitch angle, such as the inertial force and the reaction of the driving force. We proposed the method considering the dynamic equilibrium of the pitch angle and confirmed the effect of the restraining wheels’ movement when the proposed method was applied.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering,Instrumentation,Modelling and Simulation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Longitudinal Stability of Wheeled Mobile Robots - Permissible Forces and Accelerations;2023 International Conference Automatics and Informatics (ICAI);2023-10-05

2. Modeling and Design of a Stair Climbing Wheelchair with Pose Estimation and Adjustment;Journal of Intelligent & Robotic Systems;2022-11

3. Mini-review: Robotic wheelchair taxonomy and readiness;Neuroscience Letters;2022-02

4. Prototype of Wheeled Stilts-Type Personal Micro-Mobility;2021 IEEE International Conference on Mechatronics and Automation (ICMA);2021-08-08

5. Dynamic Stability Control of Inverted-Pendulum-Type Robotic Wheelchair for Going Up and Down Stairs;2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2020-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3