A pilot study on locomotion training via biomechanical models and a wearable haptic feedback system

Author:

Demircan EmelORCID

Abstract

AbstractLocomotion is a fundamental human skill. Real-time sensing and feedback is a promising strategy for motion training to reconstruct healthy locomotion patterns lost due to aging or disease, and to prevent injuries. In this paper, we present a pilot study on locomotion training via biomechanical modeling and a wearable haptic feedback system. In addition, a novel simulation framework for motion tracking and analysis is introduced. This unified framework, implemented within the Unity environment, is used to analyze subject’s baseline and performance characteristics, and to provide real-time haptic feedback during locomotion. The framework incorporates accurate musculoskeletal models derived from OpenSim, closed-form calculations of muscle routing kinematics and kinematic Jacobian matrices, dynamic performance metrics (i.e., muscular effort), human motion reconstruction via inertial measurement unit (IMU) sensors, and real-time visualization of the motion and its dynamics. A pilot study was conducted in which 6 healthy subjects learned to alter running patterns to lower the knee flexion moment (KFM) through haptic feedback. We targeted three gait parameters (trunk lean, cadence, and foot strike) that previous studies had identified as having an influence on reducing the knee flexion moment and associated with increased risk of running injuries. All subjects were able to adopt altered running patterns requiring simultaneous changes to these kinematic parameters and reduced their KFM to 30–85% of their baseline values. The muscular effort during motion training stayed comparable to subjects’ baseline. This study shows that biomechanical modeling, together with real-time sensing and wearable haptic feedback can greatly increase the efficiency of motion training.

Funder

California State University Long Beach

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering,Instrumentation,Modeling and Simulation

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3