Expert–Novice Level Classification Using Graph Convolutional Network Introducing Confidence-Aware Node-Level Attention Mechanism

Author:

Seino Tatsuki1ORCID,Saito Naoki2ORCID,Ogawa Takahiro3ORCID,Asamizu Satoshi4,Haseyama Miki3ORCID

Affiliation:

1. Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan

2. Office of Institutional Research, Hokkaido University, Sapporo 060-0808, Japan

3. Faculty of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan

4. National Institute of Technology, Kushiro College, Kushiro 084-0916, Japan

Abstract

In this study, we propose a classification method of expert–novice levels using a graph convolutional network (GCN) with a confidence-aware node-level attention mechanism. In classification using an attention mechanism, highlighted features may not be significant for accurate classification, thereby degrading classification performance. To address this issue, the proposed method introduces a confidence-aware node-level attention mechanism into a spatiotemporal attention GCN (STA-GCN) for the classification of expert–novice levels. Consequently, our method can contrast the attention value of each node on the basis of the confidence measure of the classification, which solves the problem of classification approaches using attention mechanisms and realizes accurate classification. Furthermore, because the expert–novice levels have ordinalities, using a classification model that considers ordinalities improves the classification performance. The proposed method involves a model that minimizes a loss function that considers the ordinalities of classes to be classified. By implementing the above approaches, the expert–novice level classification performance is improved.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3