Sidewinding locomotion of flatworm-like mesh robot WORMESH-II

Author:

Rasanga Ganegoda V. C.ORCID,Hiraishi Kengo,Hodoshima Ryuichi,Kotosaka Shinya

Abstract

AbstractWORMESH-II, which is the second prototype in the WORMESH series, is inspired by a flatten and soft-bodied fatworm, and its uniqueness is the use of multiple travelling waves for locomotion. In this paper, the sidewinding locomotions for WORMESH-II are talked about. This is because sidewinding is one of the most effective ways to traverse sandy terrain. The mathematical model of the sidewinding locomotion kinematics of WORMESH-II explains how synchronous multiple sidewinding waves can be used to control the movement of the robot effectively. Unlike WORMESH’s pedal-wave locomotion, sidewinding gaits allow the robot to be manoeuvred in any direction without changing the joint sequence. Relative to the wave propagation direction, velocity in the longitudinal direction is dependent on the vertical component of sidewinding travelling waves. Moreover, velocity in the transverse direction depends on the horizontal component of sidewinding travelling waves. The velocity in the longitudinal direction becomes zero when the phase shift of the travelling waves equals $$\pi $$ π rad. The angular velocity around the instantaneous centre of rotation depends on the wave amplitude of the horizontal component of the sidewinding travelling wave along the kinematic chains, and the turning radius is proportional to the amplitude gradient along the kinematic chains. The dynamic simulation of WORMESH-II and testing with the WORMESH-II prototype confirmed the proposed method, which was based on the metamathematical explanation of locomotion.

Funder

JSPS KAKENHI

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering,Instrumentation,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3