Abstract
Abstract
Background
The ‘genetic diversity’ hypothesis posits that polyandry evolved as a mechanism to increase genetic diversity within broods. One extension of this hypothesis is the ‘genetic diversity for disease resistance’ hypothesis (GDDRH). Originally designed for eusocial Hymenoptera, GDDRH states that polyandry will evolve as an effect of lower parasite prevalence in genetically variable broods. However, this hypothesis has been broadly applied to several other taxa. It is unclear how much empirical evidence supports GDDRH specifically, especially outside eusocial Hymenoptera.
Results
This question was addressed by conducting a literature review and posteriorly conducting meta-analyses on the data available using Hedges’s g. The literature review found 10 direct and 32 indirect studies with both having a strong publication bias towards Hymenoptera. Two meta-analyses were conducted and both found increased polyandry (direct tests; n = 8, g = 0.2283, p = < 0.0001) and genetic diversity generated by other mechanisms (indirect tests; n = 10, g = 0.21, p = < 0.0001) reduced parasite load. A subsequent moderator analysis revealed that there were no differences among Orders, indicating there may be applicability outside of Hymenoptera. However, due to publication bias and low sample size we must exercise caution with these results.
Conclusion
Despite the fact that the GDDRH was developed for Hymenoptera, it is frequently applied to other taxa. This study highlights the low amount of direct evidence supporting GDDRH, particularly outside of eusocial Hymenoptera. It calls for future research to address species that have high dispersal rates and contain mixes of solitary and communal nesting.
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献