Mechanisms for polyandry evolution in a complex social bee

Author:

Delaplane KeithORCID,Hagan Katherine,Vogel KevinORCID,Bartlett LewisORCID

Abstract

Abstract Polyandry in social Hymenoptera is associated with reduced within-colony relatedness and increased colony-level ecologic fitness. One explanation for this sees increasing within-nest genetic diversity as a mechanism for improving group task efficiency and colony competitiveness. A queen on her mating flight captures nearly 90% of her breeding population’s allele potential by her tenth effective mating (me ~ 10 males). Under this population allele capture (PAC) model, colony fitness gains track mating number in an asymptotic manner, leveling out after about the tenth mating. A supporting theory we call the genotype composition (GC) model sees genetic novelty at mating levels higher than the me ~ 10 asymptote, the hyperpolyandry zone, resulting from unique genotype compositions whose number are potentially infinite. Colony fitness gains under the GC model will track mating number in a linear manner. We set up field colonies with Apis mellifera queens each instrumentally mated with 1, 2, 4, 8, 16, or 32 males, creating a polyandry gradient bracketing the qualitative divide of me ~ 10, measured tokens of colony level fitness, and collected observation hive data. Our results lead us to conclude that (1) ancestral colony traits fundamental to eusociality (cooperative brood care) respond to mating level changes at or below me ~ 10 in a manner consistent with the PAC model, whereas (2) more derived specialized colony phenotypes (resistance to the non-native parasite Varroa destructor) continue improving with increasing me in a manner consistent with the GC model. By either model, (3) the mechanism for increasing colony fitness is an increase in worker task specialisms and task efficiency. Significance statement Polyandry is a female’s practice of mating with many males, storing their sperm, and using it to produce genetically diverse offspring. In complex social bees, a queen captures nearly 90% of her breeding population’s diversity potential by her tenth mating; however, queens in nature routinely mate with many more than ten males. We tested two models that, together, explain how social bee colonies ecologically benefit from queen mating numbers ranging from 2 to potential infinity. A population allele capture (PAC) model focuses on colony fitness gains at mating numbers at or below 10, and we provide evidence that it was at these polyandry levels that significant gains were made in an ancestral eusocial trait, cooperative brood care. A genotype composition (GC) model focuses on colony fitness gains at higher mating numbers, and we believe these gains are centered around more recently evolved ecologic specialisms such as parasite resistance.

Funder

Foundation for Food and Agriculture Research

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3