Positive selection of skeleton-related genes during duck domestication revealed by whole genome sequencing

Author:

Zhu Tao,Qi Xin,Chen Yu,Wang Liang,Lv Xueze,Yang Weifang,Zhang Jianwei,Li Kaiyang,Ning Zhonghua,Jiang Zhihua,Qu Lujiang

Abstract

Abstract Background Domestication alters several phenotypic, neurological, and physiological traits in domestic animals compared to those in their wild ancestors. Domestic ducks originated from mallards, and some studies have shown that spot-billed ducks may have also made minor genetic contributions to domestication. Compared with the two ancestral species, domestic ducks generally differ in body size and bone morphology. In this study, we performed both genomic and transcriptomic analyses to identify candidate genes for elucidating the genetic mechanisms underlying phenotypic variation. Methods In this study, the duck genome data from eight domestic breeds and two wild species were collected to study the genetic changes during domestication. And the transcriptome data of different tissues from wild ducks and seven domestic ducks were used to reveal the expression difference between wild and domestic ducks. Results Using fixation index (Fst) algorithm and transcriptome data, we found that the genes related to skeletal development had high Fst values in wild and domestic breeds, and the differentially expressed genes were mainly enriched in the ossification pathway. Our data strongly suggest that the skeletal systems of domestic ducks were changed to adapt to artificial selection for larger sizes. In addition, by combining the genome and transcriptome data, we found that some Fst candidate genes exhibited different expression patterns, and these genes were found to be involved in digestive, immune, and metabolic functions. Conclusions A wide range of phenotypic differences exists between domestic and wild ducks. Through both genome and transcriptome analyses, we found that genes related to the skeletal system in domestic ducks were strongly selected. Our findings provide new insight into duck domestication and selection effects during the domestication.

Funder

Beijing Innovation Consortium of Agriculture Research System

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3