Selection on the promoter regions plays an important role in complex traits during duck domestication

Author:

Yin Zhong-Tao,Li Xiao-Qin,Sun Yun-Xiao,Smith Jacqueline,Hincke Maxwell,Yang Ning,Hou Zhuo-Cheng

Abstract

Abstract Background Identifying the key factors that underlie complex traits during domestication is a great challenge for evolutionary and biological studies. In addition to the protein-coding region differences caused by variants, a large number of variants are located in the noncoding regions containing multiple types of regulatory elements. However, the roles of accumulated variants in gene regulatory elements during duck domestication and economic trait improvement are poorly understood. Results We constructed a genomics, transcriptomics, and epigenomics map of the duck genome and assessed the evolutionary forces that have been in play across the whole genome during domestication. In total, 304 (42.94%) gene promoters have been specifically selected in Pekin duck among all selected genes. Joint multi-omics analysis reveals that 218 genes (72.01%) with selected promoters are located in open and active chromatin, and 267 genes (87.83%) with selected promoters were highly and differentially expressed in domestic trait-related tissues. One important candidate gene ELOVL3, with a strong signature of differentiation on the core promoter region, is known to regulate fatty acid elongation. Functional experiments showed that the nearly fixed variants in the top selected ELOVL3 promoter in Pekin duck decreased binding ability with HLF and increased gene expression, with the overexpression of ELOVL3 able to increase lipid deposition and unsaturated fatty acid enrichment. Conclusions This study presents genome resequencing, RNA-Seq, Hi-C, and ATAC-Seq data of mallard and Pekin duck, showing that selection of the gene promoter region plays an important role in gene expression and phenotypic changes during domestication and highlights that the variants of the ELOVL3 promoter may have multiple effects on fat and long-chain fatty acid content in ducks.

Funder

Key Technology Research and Development Program

National Natural Science Foundation of China

China Agriculture Research System of MOF and MARA

China Postdoctoral Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3